3-DIMENSIONAL ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC CONSERVATION-LAWS

被引:217
作者
BELL, J
BERGER, M
SALTZMAN, J
WELCOME, M
机构
[1] NYU,COURANT INST,NEW YORK,NY 10012
[2] LOS ALAMOS NATL LAB,LOS ALAMOS,NM 87545
关键词
ADAPTIVE METHODS; MESH REFINEMENT;
D O I
10.1137/0915008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A local adaptive mesh refinement algorithm for solving hyperbolic systems of conservation laws in three space dimensions is described. The method is based on the use of local grid patches superimposed on a coarse grid to achieve sufficient resolution in the solution. A numerical example computing the interaction of a shock with a dense cloud in a supersonic inviscid regime is presented. Detailed timings are given to illustrate the performance of the method in three dimensions.
引用
收藏
页码:127 / 138
页数:12
相关论文
共 15 条
  • [1] Baum R., 1992, AIAA J, V92, P448
  • [2] AN ALGORITHM FOR POINT CLUSTERING AND GRID GENERATION
    BERGER, M
    RIGOUTSOS, I
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (05): : 1278 - 1286
  • [3] LOCAL ADAPTIVE MESH REFINEMENT FOR SHOCK HYDRODYNAMICS
    BERGER, MJ
    COLELLA, P
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) : 64 - 84
  • [4] ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS
    BERGER, MJ
    OLIGER, J
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) : 484 - 512
  • [5] THE VONNEUMANN PARADOX FOR THE DIFFRACTION OF WEAK SHOCK-WAVES
    COLELLA, P
    HENDERSON, LF
    [J]. JOURNAL OF FLUID MECHANICS, 1990, 213 : 71 - 94
  • [6] EFFICIENT SOLUTION ALGORITHMS FOR THE RIEMANN PROBLEM FOR REAL GASES
    COLELLA, P
    GLAZ, HM
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 59 (02) : 264 - 289
  • [7] COLELLA P, P PHYSICS COMPRESSIB
  • [8] COLELLA P, IN PRESS MULTIFLUID
  • [9] DIETACHMAYER GS, 1992, MON WEATHER REV, V120, P1675, DOI 10.1175/1520-0493(1992)120<1675:AOCDGA>2.0.CO
  • [10] 2