LOWER BOUNDS FOR SOLVING LINEAR DIOPHANTINE EQUATIONS ON RANDOM-ACCESS MACHINES

被引:11
作者
MEYER, F
DERHEIDE, A
机构
[1] Johann Wolfgang Goethe-Univ, Frankfurt, West Ger, Johann Wolfgang Goethe-Univ, Frankfurt, West Ger
关键词
COMPUTER PROGRAMMING - Algorithms;
D O I
10.1145/4221.4250
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The author proves lower bounds for the time complexity of deciding the solvability of Diophantine linear equations with n variables; that is, of deciding whether a given linear equation has a solution with nonnegative integer coefficients.
引用
收藏
页码:929 / 937
页数:9
相关论文
共 10 条
[1]  
Aho A. V., 1974, DESIGN ANAL COMPUTER, V1st
[2]  
[Anonymous], 1979, COMPUTERS INTRACTABI
[3]  
Blaschke Wilhelm, 1914, JAHRESBER DTSCH MATH, V23, P369
[4]  
DOBKIN D, 1975, J COMPUT SYST SCI, V16, P417
[5]  
HEIDE FMAD, 1984, J ACM, V31, P668, DOI 10.1145/828.322450
[6]  
KANNAN R, 1983, 15TH P ANN ACM S THE, P193
[7]   A LOWER TIME BOUND FOR THE KNAPSACK-PROBLEM ON RANDOM-ACCESS MACHINES [J].
KLEIN, P ;
AUFDERHEIDE, FM .
ACTA INFORMATICA, 1983, 19 (04) :385-395
[8]  
LAUTEMANN C, UNPUB INF PROC LETT
[9]  
LENSTRA HW, 1981, 8103 U AMST MATH I R
[10]  
[No title captured]