CONSERVATIVE AND NONCONSERVATIVE SCHEMES FOR THE SOLUTION OF THE NONLINEAR SCHRODINGER-EQUATION

被引:127
作者
SANZSERNA, JM [1 ]
VERWER, JG [1 ]
机构
[1] CTR MATH & COMP SCI, AMSTERDAM, NETHERLANDS
关键词
D O I
10.1093/imanum/6.1.25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:25 / 42
页数:18
相关论文
共 24 条
[1]  
DEKKER K., 1984, STABILITY RUNGE KUTT
[2]   FINITE-DIFFERENCE SOLUTIONS OF A NON-LINEAR SCHRODINGER-EQUATION [J].
DELFOUR, M ;
FORTIN, M ;
PAYRE, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 44 (02) :277-288
[3]   A NUMERICAL STUDY OF THE NONLINEAR SCHRODINGER-EQUATION [J].
GRIFFITHS, DF ;
MITCHELL, AR ;
MORRIS, JL .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 45 (1-3) :177-215
[4]  
HERBST BM, 1984, UNPUB J COMP PHYS
[5]  
HERBST BM, 1983, NA66 U DUND REP
[6]  
Lambert J.D., 1973, COMPUTATIONAL METHOD
[7]   NUMERICAL-METHODS BASED ON ADDITIVE SPLITTINGS FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
LEVEQUE, RJ ;
OLIGER, J .
MATHEMATICS OF COMPUTATION, 1983, 40 (162) :469-497
[8]   AN ENVELOPE SOLITON PROBLEM [J].
MILES, JW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 41 (02) :227-230
[9]  
MORTON KW, 1977, STATE ART NUMERICAL, P699
[10]  
SANZSERNA JM, 1984, MATH COMPUT, V43, P21, DOI 10.1090/S0025-5718-1984-0744922-X