LIMIT THEORY FOR M-ESTIMATES IN AN INTEGRATED INFINITE VARIANCE PROCESS

被引:54
作者
KNIGHT, K
机构
关键词
D O I
10.1017/S0266466600004400
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider the limiting distributions of M-estimates of an “autoregressive” parameter when the observations come from an integrated linear process with infinite variance innovations. It is shown that M-estimates are, asymptotically, infinitely more efficient than the least-squares estimator (in the sense that they have a faster rate of convergence) and are conditionally asymptotically normal. © 1991, Cambridge University Press. All rights reserved.
引用
收藏
页码:200 / 212
页数:13
相关论文
共 14 条
[1]  
AVRAM F, 1989, UNPUB WEAK CONVERGEN
[2]   A NEW APPROACH TO DECOMPOSITION OF ECONOMIC TIME-SERIES INTO PERMANENT AND TRANSITORY COMPONENTS WITH PARTICULAR ATTENTION TO MEASUREMENT OF THE BUSINESS-CYCLE [J].
BEVERIDGE, S ;
NELSON, CR .
JOURNAL OF MONETARY ECONOMICS, 1981, 7 (02) :151-174
[3]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[4]  
BILLINGSLEY P, 1971, WEAK CONVERGENCE PRO
[5]   ON THE 1ST-ORDER AUTOREGRESSIVE PROCESS WITH INFINITE VARIANCE [J].
CHAN, NH ;
TRAN, LT .
ECONOMETRIC THEORY, 1989, 5 (03) :354-362
[7]  
Feller W., 2008, INTRO PROBABILITY TH
[8]  
Gordin M. I., 1969, SOV MATH DOKL, V10, P1174
[9]  
HALL P, 1980, MARTINGALE LIMIT THE
[10]  
KNIGHT K, 1989, CANADIAN J STATISTIC, P261