DETECTION OF N-14 AND CL-35 IN COCAINE BASE AND HYDROCHLORIDE USING NQR, NMR, AND SQUID TECHNIQUES

被引:88
作者
YESINOWSKI, JP
BUESS, ML
GARROWAY, AN
ZIEGEWEID, M
PINES, A
机构
[1] UNIV CALIF BERKELEY,DEPT CHEM,BERKELEY,CA 94720
[2] UNIV CALIF BERKELEY,LAWRENCE BERKELEY LAB,DIV SCI MAT,BERKELEY,CA 94720
关键词
D O I
10.1021/ac00109a053
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Results from N-14 pure NQR of cocaine in the free base form (cocaine base) yield a nuclear quadrupole coupling constant (NQCC) e(2)Qq/h of 5.0229 (+/-0.0001) MHz and an asymmetry parameter eta of 0.0395 (+/0.0001) at 295 K, with corresponding values of 5.0460 (+/-0.0013) MHz and 0.0353 (+/-0.000S) at 77 K. The NQR peaks of a sample of cocaine base containing similar to 1% impurities are a factor of 3 broader than those of a recrystallized sample, but spin-lattice and spin-spin relaxation times are essentially unchanged, Both pure NQR (at 295-77 K) and a superconducting quantum interference device (SQUID) detector (at 4.2 K) were used to measure the very low (<1 MHz) N-14 transition frequencies in cocaine hydrochloride; at 295 K the NQCC is 1.1780 (+/-0.0014) MHz and the asymmetry parameter is 0.2632 (+/-0.0034). Cocaine hydrochloride exhibits a broad Cl-35 pure NQR resonance at 2.53 MRz. The Cl-35 NMR spectrum at 7.0 T is that of a central 1/2 --> -1/2 transition greatly broadened by second-order quadrupolar effects. Stepping the carrier frequency enables one to obtain a powder pattern without the severe intensity distortions that otherwise arise from finite pulse power. A powder pattern simulation using an NQCC value of 5.027 MHz and an asymmetry parameter eta of 0.2 agrees reasonably well with the experimental stepped-frequency spectrum, The use of pure NQR for providing nondestructive, quantitative, and highly specific detection of crystalline compounds is discussed, as are experimental strategies.
引用
收藏
页码:2256 / 2263
页数:8
相关论文
共 37 条
[1]  
AVDOVICH HW, 1983, CAN J SPECTROSC, V28, P1
[2]   NITROGEN AND CHLORINE NQR IN PARAELECTRIC AND FERROELECTRIC TRIS-SARCOSINE CALCIUM-CHLORIDE [J].
BLINC, R ;
MALI, M ;
OSREDKAR, R ;
SELIGER, J .
JOURNAL OF CHEMICAL PHYSICS, 1975, 63 (01) :35-37
[3]  
BUESS ML, 1993, ADVANCES IN ANALYSIS AND DETECTION OF EXPLOSIVES, P361
[4]   NQR DETECTION USING A MEANDERLINE SURFACE COIL [J].
BUESS, ML ;
GARROWAY, AN ;
MILLER, JB .
JOURNAL OF MAGNETIC RESONANCE, 1991, 92 (02) :348-362
[5]   STEADY-STATE FREE PRECESSION IN NUCLEAR MAGNETIC RESONANCE [J].
CARR, HY .
PHYSICAL REVIEW, 1958, 112 (05) :1693-1701
[6]   NUCLEAR-QUADRUPOLE RESONANCE-SPECTRA DATABASE [J].
CHIHARA, H .
JOURNAL OF MOLECULAR STRUCTURE, 1982, 83 (1-4) :1-7
[7]   MUTUAL ORIENTATIONS OF PRINCIPAL AXES OF ELECTRIC-FIELD GRADIENT TENSORS ON N-14 AND BR-81 BY COMBINED ZEEMAN-EFFECT MEASUREMENTS IN A SINGLE CRYSTAL OF PARA BROMOANILINE [J].
COLLIGIANI, A ;
AMBROSETTI, R ;
CECCHI, P .
JOURNAL OF CHEMICAL PHYSICS, 1971, 55 (09) :4400-+
[8]   MAGNETIC-RESONANCE SPECTROMETER WITH A DC SQUID DETECTOR [J].
CONNOR, C ;
CHANG, J ;
PINES, A .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (03) :1059-1063
[9]   CRYSTAL AND MOLECULAR STRUCTURE OF L-COCAINE HYDROCHLORIDE [J].
GABE, EJ ;
BARNES, WH .
ACTA CRYSTALLOGRAPHICA, 1963, 16 (08) :796-&
[10]   RAMAN-SPECTROSCOPIC STUDY OF COCAINE CHLORHYDRATE [J].
GAMOT, AP ;
VERGOTEN, G ;
FLEURY, G .
TALANTA, 1985, 32 (05) :363-372