HIGH-AFFINITY BINDING OF A FUNGAL OLIGOPEPTIDE ELICITOR TO PARSLEY PLASMA-MEMBRANES TRIGGERS MULTIPLE DEFENSE RESPONSES

被引:453
作者
NURNBERGER, T
NENNSTIEL, D
JABS, T
SACKS, WR
HAHLBROCK, K
SCHEEL, D
机构
[1] Max-Planck-Institut für Züchtungsforschung Abteilung Biochemie, D-50829 Köln
关键词
D O I
10.1016/0092-8674(94)90423-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An oligopeptide of 13 amino acids (Pep-13) identified within a 42 kDa glycoprotein elicitor from P. megasperma was shown to be necessary and sufficient to stimulate a complex defense response in parsley cells comprising H+/Ca2+ influxes, K+/Cl- effluxes, an oxidative burst, defense-related gene activation, and phytoalexin formation. Binding of radiolabeled Pep-13 to parsley microsomes and protoplasts was specific, reversible, and saturable. Identical structural features of Pep-13 were found to be responsible for specific binding and initiation of all plant responses analyzed. The high affinity binding site recognizing the peptide ligand (K-D = 2.4 nM) may therefore represent a novel class of receptors in plants, and the rapidly induced ion fluxes may constitute elements of the signal transduction cascade triggering pathogen defense in plants.
引用
收藏
页码:449 / 460
页数:12
相关论文
共 55 条
[1]   RAPID STIMULATION OF AN OXIDATIVE BURST DURING ELICITATION OF CULTURED PLANT-CELLS - ROLE IN DEFENSE AND SIGNAL TRANSDUCTION [J].
APOSTOL, I ;
HEINSTEIN, PF ;
LOW, PS .
PLANT PHYSIOLOGY, 1989, 90 (01) :109-116
[2]  
ATKINSON MM, 1993, ADV PLANT PATHOL, V10, P35
[3]  
BASSE CW, 1993, J BIOL CHEM, V268, P14724
[4]   ELICITOR-INDUCED AND WOUND-INDUCED OXIDATIVE CROSS-LINKING OF A PROLINE-RICH PLANT-CELL WALL PROTEIN - A NOVEL, RAPID DEFENSE RESPONSE [J].
BRADLEY, DJ ;
KJELLBOM, P ;
LAMB, CJ .
CELL, 1992, 70 (01) :21-30
[5]   RAPID INDUCTION OF ETHYLENE BIOSYNTHESIS IN CULTURED PARSLEY CELLS BY FUNGAL ELICITOR AND ITS RELATIONSHIP TO THE INDUCTION OF PHENYLALANINE AMMONIA-LYASE [J].
CHAPPELL, J ;
HAHLBROCK, K ;
BOLLER, T .
PLANTA, 1984, 161 (05) :475-480
[6]   ACTIVE OXYGEN SPECIES IN THE INDUCTION OF PLANT SYSTEMIC ACQUIRED-RESISTANCE BY SALICYLIC-ACID [J].
CHEN, ZX ;
SILVA, H ;
KLESSIG, DF .
SCIENCE, 1993, 262 (5141) :1883-1886
[7]   STRUCTURE-ACTIVITY-RELATIONSHIPS OF OLIGO-BETA-GLUCOSIDE ELICITORS OF PHYTOALEXIN ACCUMULATION IN SOYBEAN [J].
CHEONG, JJ ;
BIRBERG, W ;
FUGEDI, P ;
PILOTTI, A ;
GAREGG, PJ ;
HONG, N ;
OGAWA, T ;
HAHN, MG .
PLANT CELL, 1991, 3 (02) :127-136
[8]   A SPECIFIC, HIGH-AFFINITY BINDING-SITE FOR THE HEPTA-BETA-GLUCOSIDE ELICITOR EXISTS IN SOYBEAN MEMBRANES [J].
CHEONG, JJ ;
HAHN, MG .
PLANT CELL, 1991, 3 (02) :137-147
[9]   THE PROTEIN-KINASE INHIBITOR, K-252A, DECREASES ELICITOR-INDUCED CA2+ UPTAKE AND K+ RELEASE, AND INCREASES COUMARIN SYNTHESIS IN PARSLEY CELLS [J].
CONRATH, U ;
JEBLICK, W ;
KAUSS, H .
FEBS LETTERS, 1991, 279 (01) :141-144
[10]   HIGH-AFFINITY BINDING OF A SYNTHETIC HEPTAGLUCOSIDE AND FUNGAL GLUCAN PHYTOALEXIN ELICITORS TO SOYBEAN MEMBRANES [J].
COSIO, EG ;
FREY, T ;
VERDUYN, R ;
VANBOOM, J ;
EBEL, J .
FEBS LETTERS, 1990, 271 (1-2) :223-226