NEW RUNGE-KUTTA-NYSTROM FORMULA-PAIRS OF ORDER 8(7), 9(8), 10(9) AND 11(10) FOR DIFFERENTIAL-EQUATIONS OF THE FORM Y'' = F(X,Y)

被引:36
作者
FILIPPI, S [1 ]
GRAF, J [1 ]
机构
[1] UNIV GIESSEN,D-6300 GIESSEN,FED REP GER
关键词
D O I
10.1016/0377-0427(86)90073-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For initial value problems in ordinary second-order differential equations of the special form y double prime equals f(x, y), new explicit, direct Runge-Kutta-Nystrom formula-pairs of order 8(7), 9(8), 10(9) and 11(10) are presented using the mode of Bettis, Dormand and Prince. Two numerical examples demonstrate the efficiency of the new formula-pairs.
引用
收藏
页码:361 / 370
页数:10
相关论文
共 10 条
[1]  
Bettis D. G., 1973, Celestial Mechanics, V8, P229, DOI 10.1007/BF01231421
[2]   NEW RUNGE-KUTTA ALGORITHMS FOR NUMERICAL-SIMULATION IN DYNAMICAL ASTRONOMY [J].
DORMAND, JR ;
PRINCE, PJ .
CELESTIAL MECHANICS, 1978, 18 (03) :223-232
[3]   A 9TH ORDER RUNGE-KUTTA-NYSTROM FORMULA WITH STEPSIZE CONTROL FOR THE DIFFERENTIAL-EQUATIONS X-UMLAUT=F(T,X) [J].
FEHLBERG, E .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (10) :477-485
[4]   CLASSICAL RUNGE-KUTTA-NYSTROM-FORMULAS WITH STEP-SIZE CONTROL FOR DIFFERENTIAL EQUATIONS X=F (T,X) [J].
FEHLBERG, E .
COMPUTING, 1972, 10 (04) :305-315
[5]   AN RKT-FORMULA FOR DIFFERENTIAL-EQUATIONS OF THE TYPE X=F(T,X) [J].
FEHLBERG, E .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (06) :261-268
[6]  
FEHLBERG E, UNPUB ZAMM
[7]  
FILIPPI S, UNPUB COMPUTING
[8]   A ONE-STEP METHOD OF ORDER 10 FOR Y''=F(X,Y) [J].
HAIRER, E .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1982, 2 (01) :83-94
[9]  
HAIRER E, 1976, NUMER MATH, V25, P383, DOI 10.1007/BF01396335
[10]   COMPARING NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS [J].
HULL, TE ;
ENRIGHT, WH ;
FELLEN, BM ;
SEDGWICK, AE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1972, 9 (04) :603-637