PROPAGATION OF CHAOS AND THE MCKEAN VLASOV EQUATION IN DUALS OF NUCLEAR SPACES

被引:14
作者
CHIANG, TS
KALLIANPUR, G
SUNDAR, P
机构
[1] UNIV N CAROLINA,CTR STOCHAST PROC,DEPT STAT,CHAPEL HILL,NC 27599
[2] LOUISIANA STATE UNIV,DEPT MATH,BATON ROUGE,LA 70803
关键词
D O I
10.1007/BF01447735
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An interacting system of n stochastic differential equations taking values in the dual of a countable Hilbertian nuclear space is considered. The limit (in probability) of the sequence of empirical measures determined by the above systems as n tends to infinity is identified with the law of the unique solution of the McKean-Vlasov equation. An application of our result to interacting neurons is briefly discussed. The propagation of chaos result obtained in this paper is shown to contain and improve the well-known finite-dimensional results.
引用
收藏
页码:55 / 83
页数:29
相关论文
共 17 条
[11]  
LEONARD C, 1986, ANN I H POINCARE-PR, V22, P237
[12]   TIGHTNESS OF PROBABILITIES ON C([0,1],PHI') AND D([0,1],PHI') [J].
MITOMA, I .
ANNALS OF PROBABILITY, 1983, 11 (04) :989-999
[13]   CONTINUITY OF STOCHASTIC-PROCESSES WITH VALUES IN THE DUAL OF A NUCLEAR SPACE [J].
MITOMA, I .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 63 (02) :271-279
[14]  
Mitoma I., 1981, MEM FS KYUSHU U A, V35, P185, DOI [10.2206/kyushumfs.35.185, DOI 10.2206/KYUSHUMFS.35.185]
[15]  
Parthasarathy K. R., 1967, PROBABILITY MEASURES, V3
[17]  
[No title captured]