SMOOTHNESS OF BEST L2 APPROXIMANTS FROM NONLINEAR SPLINE MANIFOLDS

被引:5
作者
CHUI, CK [1 ]
SMITH, PW [1 ]
WARD, JD [1 ]
机构
[1] TEXAS A&M UNIV,DEPT MATH,COLLEGE STN,TX 77843
关键词
D O I
10.2307/2005776
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:17 / 23
页数:7
相关论文
共 8 条
[1]   CRITICAL-POINTS CONCERNING NONLINEAR TSCHEBYSCHEFF-APPROXIMATION [J].
BRAESS, D .
MATHEMATISCHE ZEITSCHRIFT, 1973, 132 (04) :327-341
[2]   METRIC CURVATURE, FOLDING, AND UNIQUE BEST APPROXIMATION [J].
CHUI, CK ;
ROZEMA, ER ;
SMITH, PW ;
WARD, JD .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1976, 7 (03) :436-449
[3]   UNIQUE BEST NONLINEAR APPROXIMATION IN HILBERT SPACES [J].
CHUI, CK ;
SMITH, PW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 49 (01) :66-70
[4]  
de Boor C., 1972, Journal of Approximation Theory, V6, P50, DOI 10.1016/0021-9045(72)90080-9
[5]  
Karlin S., 1968, TOTAL POSITIVITY, VI
[6]  
ROZEMA ER, 1974, T AM MATH SOC, V188, P199
[7]   UNIFORM APPROXIMATION BY CHEBYSHEV SPLINE FUNCTIONS .2. FREE KNOTS [J].
SCHUMAKE.L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1968, 5 (04) :647-&
[8]  
SCHUMAKER LL, 1969, J APPROXIMATION THEO, V2, P410