A NECESSARY AND SUFFICIENT CONDITIONS FOR EXISTENCE OF NON NEGATIVE SOLUTIONS FOR SOME SEMILINEAR NON MONOTONE EQUATIONS

被引:129
作者
BARAS, P [1 ]
PIERRE, M [1 ]
机构
[1] UER MATH,F-54506 VANDOEUVRE NANCY,FRANCE
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1985年 / 2卷 / 03期
关键词
D O I
10.1016/S0294-1449(16)30402-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a necessary and sufficient condition on f∈Lloc1(U), f ≥ 0 for the existence of a nonnegative solution for the equation u(x)=∫UN(x,y)j(u(y))dy+f(x)a.e.x∈U. Here j is a convex function from [0, ∞[into [0, ∞[and N is a nonnegative kernel of Lloc1(U×U). This equation contains as a special case elliptic and parabolic semilinear equations of nonmonotone type like, for instance {−Δu=uΓ+gonΩ,g≥0andΓ>1givenu≥0u=0on∂Ω and its parabolic version. These examples are treated in detail. Necessary conditions in terms of W2,Γ″-capacity are also given. © 2016 L'Association Publications de l'Institut Henri Poincaré
引用
收藏
页码:185 / 212
页数:28
相关论文
共 12 条