NONEQUILIBRIUM SOLVATION IN CHEMICAL-REACTIONS .2. RATE-CONSTANT

被引:19
作者
BEREZHKOVSKII, AM [1 ]
ZITSERMAN, VY [1 ]
机构
[1] ACAD SCI MOSCOW,INST HIGH TEMP,MOSCOW 127412,USSR
关键词
D O I
10.1016/0301-0104(92)87073-I
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The stochastic equations of motion describing liquid-state reaction dynamics, which were developed in the previous paper, are used herein to calculate the reaction rate constant. These equations involve the consideration of both the intrinsic chemical conversion and the solvent adjustment accompanying the conversion on the same basis. Special attention is paid to the situation where the solvent adjusts very slowly, such that it is this adjustment which controls the reaction rate. For this limiting case the effective solvation coordinate becomes the reaction coordinate.
引用
收藏
页码:341 / 356
页数:16
相关论文
共 30 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]   SOME CONCEPTS AND MODELS IN LIQUID-STATE CHEMICAL-REACTION DYNAMICS [J].
ADELMAN, SA .
JOURNAL OF MOLECULAR LIQUIDS, 1988, 39 :265-278
[3]   TRANSIENT KINETICS OF CHEMICAL-REACTIONS WITH BOUNDED DIFFUSION PERPENDICULAR TO THE REACTION COORDINATE - INTRAMOLECULAR PROCESSES WITH SLOW CONFORMATIONAL-CHANGES [J].
AGMON, N ;
HOPFIELD, JJ .
JOURNAL OF CHEMICAL PHYSICS, 1983, 78 (11) :6947-6959
[4]   DYNAMICS OF TWO-DIMENSIONAL DIFFUSIONAL BARRIER CROSSING [J].
AGMON, N ;
KOSLOFF, R .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (07) :1988-1996
[5]   ACTIVATED RATE-PROCESSES IN THE MULTIDIMENSIONAL CASE - CONSIDERATION OF RECROSSINGS IN THE MULTIDIMENSIONAL KRAMERS PROBLEM WITH ANISOTROPIC FRICTION [J].
BEREZHKOVSKII, AM ;
ZITSERMAN, VY .
CHEMICAL PHYSICS, 1991, 157 (1-2) :141-155
[6]   NONEQUILIBRIUM SOLVATION IN CHEMICAL-REACTIONS .1. EFFECTIVE EQUATIONS OF MOTION [J].
BEREZHKOVSKII, AM .
CHEMICAL PHYSICS, 1992, 164 (03) :331-339
[7]   SOLVENT SLOW-MODE INFLUENCE ON CHEMICAL-REACTION DYNAMICS - A MULTIDIMENSIONAL KRAMERS-THEORY TREATMENT [J].
BEREZHKOVSKII, AM ;
ZITSERMAN, VY .
CHEMICAL PHYSICS LETTERS, 1990, 172 (3-4) :235-242
[8]   THE RATE-CONSTANT IN THE KRAMERS MULTIDIMENSIONAL THEORY AND THE SADDLE-POINT AVOIDANCE [J].
BEREZHKOVSKII, AM ;
BEREZHKOVSKII, LM ;
ZITZERMAN, VY .
CHEMICAL PHYSICS, 1989, 130 (1-3) :55-63
[9]   GENERALIZATION OF THE KRAMERS-LANGER THEORY - DECAY OF THE METASTABLE STATE IN THE CASE OF STRONGLY ANISOTROPIC FRICTION [J].
BEREZHKOVSKII, AM ;
ZITSERMAN, VY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (08) :2077-2092
[10]   ACTIVATED RATE-PROCESSES IN A MULTIDIMENSIONAL CASE - A NEW SOLUTION OF THE KRAMERS PROBLEM [J].
BEREZHKOVSKII, AM ;
ZITSERMAN, VY .
PHYSICA A, 1990, 166 (03) :585-621