NON-LINEAR LATTICE AND SOLITON THEORY

被引:36
作者
TODA, M
机构
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS | 1983年 / 30卷 / 08期
关键词
D O I
10.1109/TCS.1983.1085401
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:542 / 554
页数:13
相关论文
共 29 条
[1]   ANALOG OF INVERSE SCATTERING THEORY FOR DISCRETE HILLS EQUATION AND EXACT SOLUTIONS FOR PERIODIC TODA LATTICE [J].
DATE, E ;
TANAKA, S .
PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (02) :457-465
[2]  
DATE E, 1976, SUP PROG THEOR PHYS, P107, DOI 10.1143/PTPS.59.107
[3]  
Fermi E, 1955, COLLECTED PAPERS E F, V2, P977
[4]   TODA LATTICE .2. EXISTENCE OF INTEGRALS [J].
FLASCHKA, H .
PHYSICAL REVIEW B, 1974, 9 (04) :1924-1925
[5]   KORTEWEG-DEVRIES EQUATION AND GENERALIZATIONS .6. METHODS FOR EXACT SOLUTION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (01) :97-133
[6]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[8]   THEORETICAL AND EXPERIMENTAL STUDIES OF LATTICE SOLITONS IN NONLINEAR LUMPED NETWORKS [J].
HIROTA, R ;
SUZUKI, K .
PROCEEDINGS OF THE IEEE, 1973, 61 (10) :1483-1491
[9]   EXACT N-SOLITON SOLUTION OF A NONLINEAR LUMPED NETWORK EQUATION [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1973, 35 (01) :286-288
[10]   STUDIES ON LATTICE SOLITONS BY USING ELECTRICAL NETWORKS [J].
HIROTA, R ;
SUZUKI, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1970, 28 (05) :1366-&