EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS OF INHOMOGENEOUS SEMILINEAR ELLIPTIC PROBLEMS IN UNBOUNDED-DOMAINS

被引:52
作者
ZHU, XP [1 ]
ZHOU, HS [1 ]
机构
[1] ACAD SINICA,WUHAN INST MATH SCI,WUHAN 430071,PEOPLES R CHINA
基金
中国国家自然科学基金;
关键词
D O I
10.1017/S0308210500020667
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the concentration-compactness method of Lions [14,16] and the mountain pass theorem of Ambrosetti and Rabinowitz [3], through a careful inspection of the energy balance for some sequence of approximated solutions, we show that under suitable conditions on f and h, the inhomogeneous problem −Δu + c2u = λ(f(u) + h(x)) for x ∈ Ω (Ω is an exterior domain in ∝N, N ≥ 3) and u ∈ H10(Ω) has at least two positive solutions. © 1990, Royal Society of Edinburgh. All rights reserved.
引用
收藏
页码:301 / 318
页数:18
相关论文
共 22 条
[1]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[2]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]   A PERTURBATION METHOD IN CRITICAL-POINT THEORY AND APPLICATIONS [J].
BAHRI, A ;
BERESTYCKI, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 267 (01) :1-32
[5]  
BAHRI A, 1985, CR ACAD SCI I-MATH, V301, P145
[6]  
BAHRI A, EXISTENCE POSITIVE S
[7]   POSITIVE SOLUTIONS OF SOME NONLINEAR ELLIPTIC PROBLEMS IN EXTERIOR DOMAINS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 99 (04) :283-300
[8]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[9]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[10]   SOME CONTINUATION AND VARIATIONAL METHODS FOR POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC EIGENVALUE PROBLEMS [J].
CRANDALL, MG ;
RABINOWITZ, PH .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1975, 58 (03) :207-218