MINIMAX ESTIMATION IN LINEAR-REGRESSION WITH SINGULAR COVARIANCE STRUCTURE AND CONVEX POLYHEDRAL CONSTRAINTS

被引:7
作者
STAHLECKER, P
TRENKLER, G
机构
[1] UNIV OLDENBURG,DEPT ECON,W-2900 OLDENBURG,GERMANY
[2] UNIV DORTMUND,DEPT STAT,W-4600 DORTMUND 50,GERMANY
基金
中国国家自然科学基金;
关键词
REGRESSION ANALYSIS; CONVEX COMPACT POLYHEDRAL CONSTRAINTS; MINIMAX ESTIMATOR; APPROXIMATE SOLUTIONS;
D O I
10.1016/0378-3758(93)90123-N
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let the parameter of the linear regression model be restricted to a compact and convex polyhedron. On the basis of this additional information an estimator is shown to exist which minimizes the maximal weighted risk. This exact minimax solution turns out to be not feasible, but can be characterized as a limit point of approximate and operational minimax solutions. The results obtained are valid for general quadratic loss and possibly singular covariance matrix.
引用
收藏
页码:185 / 196
页数:12
相关论文
共 25 条
[1]  
[Anonymous], 2019, MATRIX DIFFERENTIAL, DOI DOI 10.1002/9781119541219.CH5
[3]   SELECTING A MINIMAX ESTIMATOR OF A MULTIVARIATE NORMAL-MEAN [J].
BERGER, JO .
ANNALS OF STATISTICS, 1982, 10 (01) :81-92
[6]  
Christensen R. A., 1987, PLANE ANSWERS COMPLE
[7]  
GAFFKE N, 1989, STATISTICS, V20, P487
[8]  
Hoffmann K., 1979, Mathematische Operationsforschung und Statistik, Series Statistics, V10, P19, DOI 10.1080/02331887908801463
[9]  
Judge GeorgeG., 1985, THEORY PRACTICE ECON, V2nd ed.
[10]  
KUKS J, 1972, NSV TEADUSTE AKADEMI, P66