H-1, N-15, AND C-13 BACKBONE CHEMICAL-SHIFT ASSIGNMENTS, SECONDARY STRUCTURE, AND MAGNESIUM-BINDING CHARACTERISTICS OF THE BACILLUS-SUBTILIS RESPONSE REGULATOR, SPOOF, DETERMINED BY HETERONUCLEAR HIGH-RESOLUTION NMR

被引:37
作者
FEHER, VA
ZAPF, JW
HOCH, JA
DAHLQUIST, FW
WHITELEY, JM
CAVANAGH, J
机构
[1] UNIV OREGON, INST MOLEC BIOL, EUGENE, OR 97403 USA
[2] UNIV OREGON, DEPT CHEM, EUGENE, OR 97403 USA
[3] SCRIPPS RES INST, DEPT MOLEC BIOL, LA JOLLA, CA 92037 USA
[4] SCRIPPS RES INST, DEPT MOLEC & EXPTL MED, LA JOLLA, CA 92037 USA
关键词
BACTERIAL SIGNAL TRANSDUCTION; CHEY; PHOSPHO-RELAY; 2-COMPONENT SIGNALING SYSTEMS;
D O I
10.1002/pro.5560040915
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Spo0F, sporulation stage 0 F protein, a 124-residue protein responsible, in part, for regulating the transition of Bacillus subtilis from a vegetative state to a dormant endospore, has been studied by high-resolution NMR. The H-1, N-15, and C-13 chemical shift assignments for the backbone residues have been determined from analyses of 3D spectra, N-15 TOCSY-HSQC, N-15 NOESY-HSQC, HNCA, and HN(CO)CA. Assignments for many side-chain proton resonances are also reported. The secondary structure, inferred from short- and medium-range NOEs, (3)J(HN alpha) coupling constants, and hydrogen exchange patterns, define a topology consistent with a doubly wound (alpha/beta)(5) fold. Interestingly, comparison of the secondary structure of Spo0F to the structure of the Escherichia coli response regulator, chemotaxis Y protein (CheY) (Volt K, Matsumura P, 1991, J Biol Chem 266:15511-15519; Bruix M et al., 1993, fur J Biochem 215:573-585), show differences in the relative length of secondary structure elements that map onto a single face of the tertiary structure of CheY. This surface may define a region of binding specificity for response regulators. Magnesium titration of Spo0F, followed by amide chemical shift changes, gives an equilibrium dissociation constant of 20 +/- 5 mM. Amide resonances most perturbed by magnesium binding are near the putative site of phosphorylation, Asp 54.
引用
收藏
页码:1801 / 1814
页数:14
相关论文
共 54 条
[1]   MANIPULATION OF INTRACELLULAR MAGNESIUM CONTENT IN POLYMYXIN-B NONAPEPTIDE-SENSITIZED ESCHERICHIA-COLI BY IONOPHORE A23187 [J].
ALATOSSAVA, T ;
JUTTE, H ;
KUHN, A ;
KELLENBERGER, E .
JOURNAL OF BACTERIOLOGY, 1985, 162 (01) :413-419
[2]   AN ALTERNATIVE 3D-NMR TECHNIQUE FOR CORRELATING BACKBONE N-15 WITH SIDE-CHAIN H-BETA-RESONANCES IN LARGER PROTEINS [J].
ARCHER, SJ ;
IKURA, M ;
TORCHIA, DA ;
BAX, A .
JOURNAL OF MAGNETIC RESONANCE, 1991, 95 (03) :636-641
[3]  
BAX A, 1991, Journal of Biomolecular NMR, V1, P99, DOI 10.1007/BF01874573
[4]   SENSITIVITY-ENHANCED TWO-DIMENSIONAL HETERONUCLEAR SHIFT CORRELATION NMR-SPECTROSCOPY [J].
BAX, A ;
SUBRAMANIAN, S .
JOURNAL OF MAGNETIC RESONANCE, 1986, 67 (03) :565-569
[5]   REMOVAL OF F1-BASE-LINE DISTORTION AND OPTIMIZATION OF FOLDING IN MULTIDIMENSIONAL NMR-SPECTRA [J].
BAX, A ;
IKURA, M ;
KAY, LE ;
ZHU, G .
JOURNAL OF MAGNETIC RESONANCE, 1991, 91 (01) :174-178
[6]   COMPARISON OF DIFFERENT MODES OF 2-DIMENSIONAL REVERSE-CORRELATION NMR FOR THE STUDY OF PROTEINS [J].
BAX, A ;
IKURA, M ;
KAY, LE ;
TORCHIA, DA ;
TSCHUDIN, R .
JOURNAL OF MAGNETIC RESONANCE, 1990, 86 (02) :304-318
[7]   MAGNESIUM BINDING TO THE BACTERIAL CHEMOTAXIS PROTEIN CHEY RESULTS IN LARGE CONFORMATIONAL-CHANGES INVOLVING ITS FUNCTIONAL SURFACE [J].
BELLSOLELL, L ;
PRIETO, J ;
SERRANO, L ;
COLL, M .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 238 (04) :489-495
[8]  
BOURRET RB, 1993, J BIOL CHEM, V268, P13089
[9]   H-1-NMR AND N-15-NMR ASSIGNMENT AND SOLUTION STRUCTURE OF THE CHEMOTACTIC ESCHERICHIA-COLI CHE Y-PROTEIN [J].
BRUIX, M ;
PASCUAL, J ;
SANTORO, J ;
PRIETO, J ;
SERRANO, L ;
RICO, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 215 (03) :573-585
[10]   INITIATION OF SPORULATION IN BACILLUS-SUBTILIS IS CONTROLLED BY A MULTICOMPONENT PHOSPHORELAY [J].
BURBULYS, D ;
TRACH, KA ;
HOCH, JA .
CELL, 1991, 64 (03) :545-552