HEAT KERNEL-EXPANSION FOR FERMIONIC BILLIARDS IN AN EXTERNAL MAGNETIC-FIELD

被引:9
作者
ANTOINE, M [1 ]
COMTET, A [1 ]
KNECHT, M [1 ]
机构
[1] UNIV PARIS 06,PHYS THEOR & HAUTES ENERGIES LAB,PARIS,FRANCE
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 01期
关键词
D O I
10.1088/0305-4470/23/1/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using Seeley's heat kernel expansion, the authors compute the asymptotic density of states of the Dirac operator coupled to a magnetic field on a two-dimensional manifold with boundary ('fermionic billiard'). Local boundary conditions compatible with vector current conservation depend on a free parameter alpha . It is shown that the perimeter correction identically vanishes for alpha =0. In that case, the next-order constant term is found to be proportional to the Euler characteristic of the manifold. These results are independent of the external magnetic field and of the shape of the billiard, provided the boundary is sufficiently smooth. For the flat circular billiard, the constant term is found to be -1/2, in agreement with a numerical result of Berry and Mondragon.
引用
收藏
页码:L35 / L41
页数:7
相关论文
共 12 条
[1]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .2. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 78 (NOV) :405-432
[2]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .3. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :71-99
[3]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[4]   NEUTRINO BILLIARDS - TIME-REVERSAL SYMMETRY-BREAKING WITHOUT MAGNETIC-FIELDS [J].
BERRY, MV ;
MONDRAGON, RJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 412 (1842) :53-74
[5]   POLYAKOVS QUANTIZED STRING WITH BOUNDARY TERMS [J].
DURHUUS, B ;
OLESEN, P ;
PETERSEN, JL .
NUCLEAR PHYSICS B, 1982, 198 (01) :157-188
[6]  
Eisenhart L. P., 2016, RIEMANNIAN GEOMETRY
[7]  
Gilkey P. B., 1975, J DIFFER GEOM, V10, P601, DOI [10.4310/jdg/1214433164, DOI 10.4310/JDG/1214433164]
[8]   CAN ONE HEAR SHAPE OF A DRUM [J].
KAC, M .
AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (4P2) :1-&
[9]   RESOLVENT OF AN ELLIPTIC BOUNDARY PROBLEM [J].
SEELEY, R .
AMERICAN JOURNAL OF MATHEMATICS, 1969, 91 (04) :889-&
[10]  
Terras A., 1985, HARMONIC ANAL SYMMET, VI