PERCOLATION MODEL FOR RELAXATION IN RANDOM-SYSTEMS

被引:5
作者
CHAMBERLIN, RV
HAINES, DN
KINGSBURY, DW
机构
[1] Department of Physics, Arizona State University, Tempe
关键词
Glass - Phase Transitions - Magnetic Properties - Measurements;
D O I
10.1016/0022-3093(91)90297-J
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A simple model for relaxation of dispersive excitations on a percolation distribution of finite clusters is used to characterize measurements of magnetic relaxation in spin glasses and stress relaxation in a structural glass. The percolation model gives excellent agreement with the observed behavior and may provide a common physical basis for several empirical relaxation functions including the power-law and stretched exponential.
引用
收藏
页码:192 / 195
页数:4
相关论文
共 17 条
[1]  
ANGELL CA, 1987, MOL DYNAMICS RELAXAT, P75
[2]   PERCOLATION MODEL FOR RELAXATION IN RANDOM-SYSTEMS [J].
CHAMBERLIN, RV ;
HAINES, DN .
PHYSICAL REVIEW LETTERS, 1990, 65 (17) :2197-2200
[3]   PERCOLATION THEORY [J].
ESSAM, JW .
REPORTS ON PROGRESS IN PHYSICS, 1980, 43 (07) :833-912
[4]   PATTERNS OF RELAXATION IN DISORDERED MATERIALS [J].
FRIEDRICH, J ;
BLUMEN, A .
PHYSICAL REVIEW B, 1985, 32 (02) :1434-1435
[5]   The specific temperatures of the electrons of small metal particles at low temperatures [J].
Frohlich, H .
PHYSICA, 1937, 4 :0406-0412
[6]   STOCHASTIC-PROCESSES - TIME EVOLUTION, SYMMETRIES AND LINEAR RESPONSE [J].
HANGGI, P ;
THOMAS, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1982, 88 (04) :207-319
[7]  
KOHLRAUSCH R, 1847, ANN PHYS, V72, P353
[9]   CLUSTER SIZE DISTRIBUTION ABOVE THE PERCOLATION-THRESHOLD [J].
LUBENSKY, TC ;
MCKANE, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (05) :L157-L161
[10]  
MARZKE RF, CATAL REV SCI ENG, V19, P43