SEMIGLOBAL EXISTENCE AND CONVERGENCE OF SOLUTIONS OF THE ROBINSON-TRAUTMAN (2-DIMENSIONAL CALABI) EQUATION

被引:113
作者
CHRUSCIEL, PT
机构
[1] Courant Institute, New York University, New York, 10012, NY
关键词
D O I
10.1007/BF02431882
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that for smooth initial data solutions of the Robinson-Trautman equation (also known as the two-dimensional Calabi equation) exist for all positive "times," and asymptotically converge to a constant curvature metric.
引用
收藏
页码:289 / 313
页数:25
相关论文
共 34 条
[1]  
AMON S, 1959, PURE APPL MATH, V12, P623
[2]  
Aubin T., 1982, NONLINEAR ANAL MANIF, V252
[3]  
Calabi E., 1982, SEMINAR DIFFERENTIAL
[4]  
CHOW B, UNPUB J DIFF GEOM
[5]   A MATHEMATICAL-THEORY OF GRAVITATIONAL COLLAPSE [J].
CHRISTODOULOU, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 109 (04) :613-647
[6]   THE STRUCTURE AND UNIQUENESS OF GENERALIZED SOLUTIONS OF THE SPHERICALLY SYMMETRICAL EINSTEIN-SCALAR EQUATIONS [J].
CHRISTODOULOU, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 109 (04) :591-611
[7]   THE PROBLEM OF A SELF-GRAVITATING SCALAR FIELD [J].
CHRISTODOULOU, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (03) :337-361
[8]  
CHRISTODOULOU D, UNPUB ANN MATH
[9]  
CHRISTODOULOU D, 1986, COMMUN MATH PHYS, V106, P387
[10]   STRONG COSMIC CENSORSHIP IN POLARIZED GOWDY SPACETIMES [J].
CHRUSCIEL, PT ;
ISENBERG, J ;
MONCRIEF, V .
CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (10) :1671-1680