DYKSTRA ALTERNATING PROJECTION ALGORITHM FOR 2 SETS

被引:126
作者
BAUSCHKE, HH [1 ]
BORWEIN, JM [1 ]
机构
[1] UNIV WATERLOO,DEPT COMBINATOR & OPTIMIZAT,WATERLOO,ON N2L 3G1,CANADA
关键词
D O I
10.1006/jath.1994.1136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze Dykstra's algorithm for two arbitrary closed convex sets in a Hilbert space. Our technique also applies to von Neumann's algorithm. Various convergence results follow. An example allows one to compare qualitative and quantitative behaviour of the two algorithms. We discuss the case of finitely many sets. (C) 1994 Academic Press, Inc.
引用
收藏
页码:418 / 443
页数:26
相关论文
共 20 条
[1]  
Bauschke H.H., 1993, SET-VALUED ANAL, V1, P185, DOI [DOI 10.1007/BF01027691, 10.1007/BF01027691]
[2]  
BAUSCHKE HH, 1992, CORR9215 U WAT FAC M
[3]  
BORWEIN D, 1993, AM MATH MONTHLY, V100, P797
[4]  
Boyle JP., 1986, LECT NOTES STAT, V37, P28
[5]  
Bruck R.E., 1977, HOUSTON J MATH, V3, P459
[6]  
CHENEY EW, 1959, P AM MATH SOC, V10, P448
[7]   RELAXED OUTER PROJECTIONS, WEIGHTED AVERAGES AND CONVEX FEASIBILITY [J].
FLAM, SD ;
ZOWE, J .
BIT, 1990, 30 (02) :289-300
[8]   ON THE VONNEUMANN ALTERNATING ALGORITHM IN HILBERT-SPACE [J].
FRANCHETTI, C ;
LIGHT, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 114 (02) :305-314
[9]  
Gaffke N., 1989, METRIKA, V36, P29, DOI [DOI 10.1007/BF02614077, 10.1007/BF02614077]
[10]  
Gubin LG., 1967, USSR COMP MATH MATH, V7, P1, DOI DOI 10.1016/0041-5553(67)90113-9