QMR - A QUASI-MINIMAL RESIDUAL METHOD FOR NON-HERMITIAN LINEAR-SYSTEMS

被引:653
作者
FREUND, RW
NACHTIGAL, NM
机构
[1] UNIV WURZBURG,INST ANGEW MATH & STAT,W-8700 WURZBURG,GERMANY
[2] MIT,DEPT MATH,CAMBRIDGE,MA 02139
关键词
D O I
10.1007/BF01385726
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The biconjugate gradient (BCG) method is the "natural" generalization of the classical conjugate gradient algorithm for Hermitian positive definite matrices to general non-Hermitian linear systems. Unfortunately, the original BCG algorithm is susceptible to possible breakdowns and numerical instabilities. In this paper, we present a novel BCG-like approach, the quasi-minimal residual (QMR) method, which overcomes the problems of BCG. An implementation of QMR based on a look-ahead version of the nonsymmetric Lanczos algorithm is proposed. It is shown how BCG iterates can be recovered stably from the QMR process. Some further properties of the QMR approach are given and an error bound is presented. Finally, numerical experiments are reported.
引用
收藏
页码:315 / 339
页数:25
相关论文
共 24 条
  • [1] SPARSE-MATRIX TEST PROBLEMS
    DUFF, IS
    GRIMES, RG
    LEWIS, JG
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1989, 15 (01): : 1 - 14
  • [2] NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A CONJUGATE-GRADIENT METHOD
    FABER, V
    MANTEUFFEL, T
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (02) : 352 - 362
  • [3] ON THE CONSTRAINED CHEBYSHEV-APPROXIMATION PROBLEM ON ELLIPSES
    FISCHER, B
    FREUND, R
    [J]. JOURNAL OF APPROXIMATION THEORY, 1990, 62 (03) : 297 - 315
  • [4] Fletcher R, 1976, LECT NOTES MATH, V506, P73, DOI DOI 10.1007/BFB0080116
  • [5] FREUND RW, 1990, RIACS9045 NASA AM RE
  • [6] FREUND RW, 1989, RIACS8954 NASA AM RE
  • [7] Golub G.H., 1983, MATRIX COMPUTATIONS
  • [8] GUTKNECHT MH, 1990, IPS9010 RES REP
  • [9] GUTKNECHT MH, 1990, IPS9016 RES REP
  • [10] METHODS OF CONJUGATE GRADIENTS FOR SOLVING LINEAR SYSTEMS
    HESTENES, MR
    STIEFEL, E
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (06): : 409 - 436