PARALLEL CIRCLE-COVER ALGORITHMS

被引:8
作者
BERTOSSI, AA
机构
[1] Univ di Pisa, Pisa, Italy, Univ di Pisa, Pisa, Italy
关键词
COMPUTER SYSTEMS; DIGITAL - Parallel Processing - MATHEMATICAL TECHNIQUES - Geometry;
D O I
10.1016/0020-0190(88)90068-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a set of n circular-arcs, each possibly having a real weight, we consider the problem of finding a subset of the arcs whose union covers the whole circle. We provide parallel algorithms running in O(log n) and O(log **2n) time, respectively, for finding a circle-cover with the smallest number of arcs and with the smallest overall weight. The algorithms require, respectively, O(n**2/log n plus qn) and O(n**3/log n) processors on a shared memory model (SMM) of parallel computers, where q-1 is the minimum number of arcs crossing any point of the circle.
引用
收藏
页码:133 / 139
页数:7
相关论文
共 9 条
[1]  
AWERBUCH B, 1984, 16TH P ANN ACM S THE, P249
[2]   SOME PARALLEL ALGORITHMS ON INTERVAL-GRAPHS [J].
BERTOSSI, AA ;
BONUCCELLI, MA .
DISCRETE APPLIED MATHEMATICS, 1987, 16 (02) :101-111
[3]  
DEKEL E, 1983, IEEE T COMPUT, V32, P307, DOI 10.1109/TC.1983.1676223
[4]   PARALLEL MATRIX AND GRAPH ALGORITHMS [J].
DEKEL, E ;
NASSIMI, D ;
SAHNI, S .
SIAM JOURNAL ON COMPUTING, 1981, 10 (04) :657-675
[5]   AN IMPROVED PARALLEL ALGORITHM FOR MAXIMAL MATCHING [J].
ISRAELI, A ;
SHILOACH, Y .
INFORMATION PROCESSING LETTERS, 1986, 22 (02) :57-60
[6]   AN INTRODUCTION TO PARALLELISM IN COMBINATORIAL OPTIMIZATION [J].
KINDERVATER, GAP ;
LENSTRA, JK .
DISCRETE APPLIED MATHEMATICS, 1986, 14 (02) :135-156
[7]   ON A CIRCLE-COVER MINIMIZATION PROBLEM [J].
LEE, CC ;
LEE, DT .
INFORMATION PROCESSING LETTERS, 1984, 18 (02) :109-115
[8]   BOUNDS TO COMPLEXITIES OF NETWORKS FOR SORTING AND FOR SWITCHING [J].
MULLER, DE ;
PREPARATA, FP .
JOURNAL OF THE ACM, 1975, 22 (02) :195-201
[9]  
QUINN MJ, 1984, COMPUT SURV, V16, P319, DOI 10.1145/2514.2515