THERMODYNAMICS OF DNA DUPLEXES WITH ADJACENT G.A MISMATCHES

被引:92
作者
LI, Y
ZON, G
WILSON, WD
机构
[1] GEORGIA STATE UNIV,DEPT CHEM,ATLANTA,GA 30303
[2] APPL BIOSYST INC,FOSTER CITY,CA 94404
关键词
D O I
10.1021/bi00244a028
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The sequence 5'-d(ATGAGCGAAT) forms a very stable self-complementary duplex with four G.A mismatch base pairs (underlined) out of ten total base pairs [Li et al. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 26-30]. The conformation is in the general B-family and is stabilized by base-pair hydrogen bonding of an unusual type, by favorable base dipole orientations, and by extensive purine-purine stacking at the mismatched sites. We have synthesized 13 decamers with systematic variations in the sequence above to determine how the flanking sequences, the number of G.A mismatches, and the mismatch sequence order (5'-GA-3' or 5'-AG-3') affect the duplex stability. Changing A.T to G.C base pairs in sequences flanking the mismatches stabilizes the duplexes, but only to the extent observed with B-form DNA. The sequence 5'-pyrimidine-GA-purine-3', however, is considerably more stable than 5'-purine-GA-pyrimidine-3'. The most stable sequences with two pairs of adjacent G.A mismatches have thermodynamic parameters for duplex formation that are comparable to those for fully Watson-Crick base-paired duplexes. Similar sequences with single G.A pairs are much less stable than sequences with adjacent G.A mismatches. Reversing the mismatch order from 5'-GA-3' to 5'-AG-3' results in an oligomer that does not form a duplex. These results agree with predictions from the model derived from NMR and molecular mechanics and indicate that the sequence 5'-pyrimidine-GA-purine-3' forms a stable conformational unit that fits quite well into a B-form double helix. In order to minimize binding at secondary nucleic acid target sites, it is obviously of great importance to consider the possible formation of such stable conformational units when designing DNA probes or antisense drug molecules.
引用
收藏
页码:7566 / 7572
页数:7
相关论文
共 36 条