SLLNS AND CLTS FOR INFINITE PARTICLE SYSTEMS

被引:4
作者
PORT, SC
STONE, CJ
WEISS, NA
机构
[1] UNIV CALIF,DEPT MATH,LOS ANGELES,CA 90024
[2] ARIZONA STATE UNIV,DEPT MATH,TEMPE,AZ 85281
关键词
D O I
10.1214/aop/1176996262
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:753 / 761
页数:9
相关论文
共 10 条
[1]  
[Anonymous], 1964, PRINCIPLES RANDOM WA, DOI DOI 10.1007/978-1-4757-4229-9
[2]  
Feller W., 1966, INTRO PROBABILITY TH, V2
[3]  
Gnedenko B.V., 1968, LIMIT DISTRIBUTIONS, VRevised
[4]  
KESTEN H, 1963, J ANAL MATH, V0011, P00285
[7]  
PORT SC, 1966, ANN MATH STATISTICS, V36, P406
[8]   ON A THEOREM BY DOBRUSHIN [J].
STONE, C .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (05) :1391-&
[9]   OCCUPATION TIME OF A SET BY COUNTABLY MANY RECURRENT RANDOM-WALKS [J].
WEISS, NA .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (01) :293-&
[10]   LIMIT THEOREMS FOR INFINITE PARTICLE SYSTEMS [J].
WEISS, NA .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 20 (02) :87-&