SOLUTIONS OF ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS WITH NEUMANN BOUNDARY-CONDITIONS

被引:17
作者
COMTE, M [1 ]
KNAAP, MC [1 ]
机构
[1] LEIDEN STATE UNIV,INST MATH,2312 AV LEIDEN,NETHERLANDS
关键词
D O I
10.1007/BF02567912
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem -Δu=|u| p-1u+λu in Ω with {Mathematical expression} on δΩ, where Ω is a bounded domain in R N, p=(N+2)/(N-2) is the critical Sobolev exponent, n the outward pointing normal and λ a constant. Our main result is that if Ω is a ball in R N, then for every λ∈R the problem admits infinitely many solutions. Next we prove that for every bounded domain Ω in R 3, symmetric with respect to a plane, there exists a constant μ>0 such that for every λ<μ this problem has at least one non-trivial solution. © 1990 Springer-Verlag.
引用
收藏
页码:43 / 70
页数:28
相关论文
共 17 条
[1]  
ADIMURTHI, 1989, EXISTENCE NONEXISTEN
[2]  
ADIMURTHI, CRITICAL SOBOLEV EXP
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[5]  
BUDD C, 1989, ASYMPTOTIC BEHAVIOUR
[6]  
CHERRIER P, 1984, B SCI MATH, V108, P225
[7]  
COMTE M, 1990, CR ACAD SCI I-MATH, V310, P775
[8]  
COMTE M, 1989, CR ACAD SCI I-MATH, V309, P597
[9]  
COMTE M, UNPUB EXISTENCE SOLU
[10]  
KNAAP MC, UNPUB LARGE SOLUTION