CONVERGENCE OF AN UPSTREAM FINITE-VOLUME SCHEME FOR A NONLINEAR HYPERBOLIC EQUATION ON A TRIANGULAR MESH

被引:35
作者
CHAMPIER, S
GALLOUET, T
HERBIN, R
机构
[1] UNIV SAVOIE, DEPT MATH, BP 1104, F-73011 CHAMBERY, FRANCE
[2] UNIV ST ETIENNE, DEPT MATH, F-42023 ST ETIENNE, FRANCE
关键词
D O I
10.1007/BF01385691
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study here the discretisation of the nonlinear hyperbolic equation u(t) + div(vf(u)) = 0 in R2 x R+, with given initial condition u(., 0) = u0(.) in R2, where v is a function from R2 X R+ to R2 such that divv = 0 and f is a given nondecreasing function from R to R. An explicit Euler scheme is used for the time discretisation of the equation, and a triangular mesh for the spatial discretisation. Under a usual stability condition, we prove the convergence of the solution given by an upstream finite volume scheme towards the unique entropy weak solution to the equation.
引用
收藏
页码:139 / 157
页数:19
相关论文
共 11 条
[1]  
CHAMPIER S, 1992, MZAN, V26, P835
[2]  
COCKBURN B, UNPUB CONVERGENCE FI
[3]   MONOTONE-DIFFERENCE APPROXIMATIONS FOR SCALAR CONSERVATION-LAWS [J].
CRANDALL, MG ;
MAJDA, A .
MATHEMATICS OF COMPUTATION, 1980, 34 (149) :1-21
[4]   MEASURE-VALUED SOLUTIONS TO CONSERVATION-LAWS [J].
DIPERNA, RJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 88 (03) :223-270
[5]  
EYMARD R, UNPUB CONVERGENCE SC
[6]  
GALLOUET T, IN PRESS J DIFFER EQ
[7]  
GODUNOV S, 1976, RESOLUTION NUMERIQUE
[8]   HIGH-RESOLUTION SCHEMES FOR HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 49 (03) :357-393