1ST-PASSAGE TIME FOR A PARTICULAR STATIONARY PERIODIC GAUSSIAN PROCESS

被引:12
作者
SHEPP, LA
SLEPIAN, D
机构
[1] BELL TEL LABS INC, MURRAY HILL, NJ 07974 USA
[2] UNIV HAWAII, HONOLULU, HI 96822 USA
关键词
D O I
10.2307/3212662
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The first-passage probability that X(t) remains above a level a throughout a time interval of length T give X(0) equals x//0 is found for a particular stationary Gaussian process X. The desired probability is explicitly found as an infinite series of integrals of a two-dimensional Gaussian density over sectors. Simpler expressions are found for the case a equals 0 and also for the unconditioned probability that X(t) be nonnegative throughout left bracket 0, T right bracket . Results of some numerical calculations are given.
引用
收藏
页码:27 / 38
页数:12
相关论文
共 5 条
[1]   LEVEL-CROSSING PROBLEMS FOR RANDOM PROCESSES [J].
BLAKE, IF ;
LINDSEY, WC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (03) :295-315
[2]  
FELLER W, 1966, INTRO PROBABILITY TH, V2, P329
[3]   FIRST PASSAGE OF INTEGRATED WIENER PROCESS [J].
GOLDMAN, M .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06) :2150-&
[4]   FIRST PASSAGE TIME FOR A PARTICULAR GAUSSIAN PROCESS [J].
SHEPP, LA .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (03) :946-&
[5]   1-SIDED BARRIER PROBLEM FOR GAUSSIAN NOISE [J].
SLEPIAN, D .
BELL SYSTEM TECHNICAL JOURNAL, 1962, 41 (02) :463-+