SELF-TESTING CORRECTING WITH APPLICATIONS TO NUMERICAL PROBLEMS

被引:445
作者
BLUM, M
LUBY, M
RUBINFELD, R
机构
[1] INT COMP SCI INST,BERKELEY,CA 94704
[2] CORNELL UNIV,DEPT COMP SCI,ITHACA,NY 14853
基金
美国国家科学基金会;
关键词
D O I
10.1016/0022-0000(93)90044-W
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Suppose someone gives us an extremely fast program P that we can call as a black box to compute a function f. Should we trust that P works correctly? A self-testing/correcting pair for f allows us to: (1) estimate the probability that P(x) ≠ φ(x) when x is randomly chosen; (2) on any input x, compute f(x) correctly as long as P is not too faulty on average. Furthermore, both (1) and (2) take time only slightly more than the original running time of P. We present general techniques for constructing simple to program self-testing/correcting pairs for a variety of numerical functions, including integer multiplication, modular multiplication, matrix multiplication, inverting matrices, computing the determinant of a matrix, computing the rank of a matrix, integer division, modular exponentiation, and polynomial multiplication. © 1993.
引用
收藏
页码:549 / 595
页数:47
相关论文
共 40 条
[1]  
ADLEMAN L, UNPUB INFORM COMPUT
[2]  
Aho A. V., 1974, DESIGN ANAL COMPUTER
[3]  
BABAI L, 1990, 5TH P STRUCT COMPL T
[4]  
BABAI L, 1990, 31ST P IEEE S F COMP
[5]  
Babai L., 1985, 17TH P STOC, P421, DOI [10.1145/22145.22192, DOI 10.1145/22145.22192]
[6]  
BEAVER D, 1990, P S THEORETICAL ASPE
[7]  
BEIGEL R, 1990, COMMUNICATION 0219
[8]  
BENOR M, 1988, 20TH P ACM S THEOR C, P113
[9]  
BENOR M, UNPUB CONVOLUTIONS G
[10]   HOW TO GENERATE CRYPTOGRAPHICALLY STRONG SEQUENCES OF PSEUDO-RANDOM BITS [J].
BLUM, M ;
MICALI, S .
SIAM JOURNAL ON COMPUTING, 1984, 13 (04) :850-864