MONITORING OF THE COOPERATIVE UNFOLDING OF THE STATE-UNIVERSITY-OF-NEW-YORK GROUP-I INTRON OF BACTERIOPHAGE-T4 - THE ACTIVE FORM OF THE STATE-UNIVERSITY-OF-NEW-YORK RIBOZYME IS STABILIZED BY MULTIPLE INTERACTIONS WITH 3' TERMINAL INTRON COMPONENTS

被引:100
作者
JAEGER, L [1 ]
WESTHOF, E [1 ]
MICHEL, F [1 ]
机构
[1] UNIV PIERRE & MARIE CURIE LAB,CNRS,CTR GENET MOLEC,F-91198 GIF SUR YVETTE,FRANCE
关键词
RIBOZYME ACTIVATION; TERTIARY INTERACTION; RNA FOLDING; SELF-SPLICING; GROUP-I INTRON;
D O I
10.1006/jmbi.1993.1590
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have studied the mechanism by which the 3′ terminal domain of the sunY intron of bacteriophage T4 activates the group I ribozyme core of this intron, from which it is separated by some 800 nucleotides. As shown by monitoring either UV absorbance or self-splicing reaction kinetics as a function of temperature, intron transcripts undergo highly cooperative unfolding/inactivation upon heating: the two methods yield similar estimates of the thermodynamic parameters associated with this process. Such cooperativity makes it possible in turn to assess the energetic contribution of specific interactions to the overall structure, by comparing the sensitivity to heat inactivation of molecules carrying various nucleotide substitutions. By combining this approach with chemical modification, we have probed several proven or putative interactions between the core and 3′ terminal domain of the intron and conclude that the role of the 3′ terminal domain is to stabilize the active form of the ribozyme. Interestingly, the P9.0 interaction, which brings 3′ terminal nucleotides next to the core site that binds the guanosine cofactor of the self-splicing reaction, is now shown to be composed in fact of two distinct pairings. An isolated base-pair (P9.0a), involving a residue located only six nucleotides upstream of the 3′ splice site, participates in the stabilization of the ribozyme and appears to persist during the second stage of self-splicing (exon ligation). In contrast, formation of the previously demonstrated P9.0b pairing, which involves the two penultimate intron nucleotides, contributes no additional stability and results in no detectable rearrangement of the core structure. Implications for the concept of a static ribozyme are discussed in the light of a slightly revised three-dimensional model of the sunY intron. © 1993 Academic Press Limited.
引用
收藏
页码:331 / 346
页数:16
相关论文
共 33 条
[1]   THERMAL UNFOLDING OF A GROUP-I RIBOZYME - THE LOW-TEMPERATURE TRANSITION IS PRIMARILY DISRUPTION OF TERTIARY STRUCTURE [J].
BANERJEE, AR ;
JAEGER, JA ;
TURNER, DH .
BIOCHEMISTRY, 1993, 32 (01) :153-163
[2]   GROUP-I INTRON SELF-SPLICING WITH ADENOSINE - EVIDENCE FOR A SINGLE NUCLEOSIDE-BINDING SITE [J].
BEEN, MD ;
PERROTTA, AT .
SCIENCE, 1991, 252 (5004) :434-437
[3]   A 3' SPLICE SITE-BINDING SEQUENCE IN THE CATALYTIC CORE OF A GROUP-I INTRON [J].
BURKE, JM ;
ESHERICK, JS ;
BURFEIND, WR ;
KING, JL .
NATURE, 1990, 344 (6261) :80-82
[4]  
CECH TR, 1990, ANNU REV BIOCHEM, V59, P543, DOI 10.1146/annurev.biochem.59.1.543
[5]   VISUALIZING THE HIGHER-ORDER FOLDING OF A CATALYTIC RNA MOLECULE [J].
CELANDER, DW ;
CECH, TR .
SCIENCE, 1991, 251 (4992) :401-407
[6]   CONFORMATIONAL-CHANGES OF TRANSFER RIBONUCLEIC-ACID - EQUILIBRIUM PHASE-DIAGRAMS [J].
COLE, PE ;
CROTHERS, DM ;
YANG, SK .
BIOCHEMISTRY, 1972, 11 (23) :4358-&
[7]   MOLECULAR MECHANISM OF THERMAL UNFOLDING OF ESCHERICHIA-COLI FORMYLMETHIONINE TRANSFER-RNA [J].
CROTHERS, DM ;
COLE, PE ;
HILBERS, CW ;
SHULMAN, RG .
JOURNAL OF MOLECULAR BIOLOGY, 1974, 87 (01) :63-&
[8]  
DIRAGO JP, 1988, J BIOL CHEM, V263, P12564
[9]   THE PHAGE-T4 NRDB INTRON - A DELETION MUTANT OF A VERSION FOUND IN THE WILD [J].
EDDY, SR ;
GOLD, L .
GENES & DEVELOPMENT, 1991, 5 (06) :1032-1041
[10]   PROBING THE STRUCTURE OF RNAS IN SOLUTION [J].
EHRESMANN, C ;
BAUDIN, F ;
MOUGEL, M ;
ROMBY, P ;
EBEL, JP ;
EHRESMANN, B .
NUCLEIC ACIDS RESEARCH, 1987, 15 (22) :9109-9128