A SUPERLINEARLY CONVERGENT METHOD FOR COMPUTING TURNING-POINTS OF CURVES IMPLICITLY DEFINED BY NON-LINEAR SYSTEMS OF EQUATIONS

被引:9
作者
PONISCH, G [1 ]
SCHWETLICK, H [1 ]
机构
[1] MARTIN LUTHER UNIV,SEKT MATH,DDR-4010 HALLE,GER DEM REP
关键词
D O I
10.1007/BF01396445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:455 / 466
页数:12
相关论文
共 13 条
[1]  
Chua L. O., 1976, International Journal of Circuit Theory and Applications, V4, P215, DOI 10.1002/cta.4490040302
[2]   A RAPIDLY CONVERGENT DESCENT METHOD FOR MINIMIZATION [J].
FLETCHER, R ;
POWELL, MJD .
COMPUTER JOURNAL, 1963, 6 (02) :163-&
[3]   SOLUTION OF NON-LINEAR EQUATIONS AND OF DIFFERENTIAL-EQUATIONS WITH 2-POINT BOUNDARY-CONDITIONS [J].
HASELGROVE, CB .
COMPUTER JOURNAL, 1961, 4 :255-&
[4]  
HUANG NY, 1975, J OPTIMIZATION THEOR, V16, P447
[5]  
KELLER H. B., 1977, APPL BIFURCATION THE, P359
[6]  
KRASNOSELSKI MA, 1973, NAHERUNGSVERFAHREN L
[7]   SOLVING NON-LINEAR EQUATIONS DEPENDING ON A REAL PARAMETER IN CASE OF SINGULAR JACOBIANS [J].
MENZEL, R ;
SCHWETLICK, H .
NUMERISCHE MATHEMATIK, 1978, 30 (01) :65-79
[8]  
MENZEL R, 1975, ZUR BEHANDLUNG SINGU
[9]  
Ortega J.M., 1970, ITERATIVE SOLUTION N
[10]  
PONISCH G, 1976, THESIS TU DRESDEN