STABILITY THEORY OF SOLITARY WAVES

被引:258
作者
BONA, J
机构
[1] UNIV CHICAGO,DEPT MATH,CHICAGO,IL 60601
[2] UNIV ESSEX,FLUID MECH RES INST,COLCHESTER,ENGLAND
来源
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1975年 / 344卷 / 1638期
关键词
D O I
10.1098/rspa.1975.0106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:363 / 374
页数:12
相关论文
共 6 条
[2]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[3]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[4]   STABILITY OF BURGERS SHOCK WAVE AND KORTEWEG-DE VRIES DOLITON [J].
JEFFERY, A ;
KAKUTANI, T .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1970, 20 (05) :463-&
[5]  
Korteweg D.J., 1895, PHILOS MAG, V39, P422, DOI [10.1080/14786449508620739, DOI 10.1080/14786449508620739]
[6]   KORTEWEG-DE VRIES EQUATION AND GENERALIZATIONS .2. EXISTENCE OF CONSERVATION LAWS AND CONSTANTS OF MOTION [J].
Miura, RM ;
GARDNER, CS ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (08) :1204-+