SCATTERING AND THERMODYNAMICS IN INTEGRABLE N = 2 THEORIES

被引:69
作者
FENDLEY, P [1 ]
INTRILIGATOR, K [1 ]
机构
[1] HARVARD UNIV, LYMAN LAB PHYS, CAMBRIDGE, MA 02138 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(92)90523-E
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study N = 2 supersymmetric integrable theories with spontaneously-broken Z(n) symmetry. They have exact soliton masses given by the affine SU(n) Toda masses and fractional fermion numbers given by multiples of 1/n. The basic such N = 2 integrable theory is the A(n)-type N = 2 minimal model perturbed by the most relevant operator. The soliton content and exact S-matrices are obtained using the Landau-Ginzburg description. We study the thermodynamics of these theories and calculate the ground-state energies exactly, verifying that they have the correct conformal limits. We conjecture that the soliton content and S-matrices in other integrable Z(n) N = 2 theories are given by the tensor product of the above basic N = 2 Z(n) scattering theory with various N = 0 theories. In particular, we consider integrable perturbations of N = 2 Kazama-Suzuki models described by generalized Chebyshev potentials, CP(n-1) sigma models, and N = 2 sine-Gordon and its affine Toda generalizations.
引用
收藏
页码:265 / 290
页数:26
相关论文
共 66 条
[31]  
KOBAYASHI K, 1991, KUCP41
[32]   THE S-MATRIX OF A FACTORIZABLE SUPERSYMMETRIC Z(N) MODEL [J].
KOBERLE, R ;
KURAK, V .
PHYSICS LETTERS B, 1987, 191 (03) :295-298
[33]   SOLITONS IN THE SUPERSYMMETRIC CPN-1 MODEL [J].
KOBERLE, R ;
KURAK, V .
PHYSICAL REVIEW D, 1987, 36 (02) :627-628
[34]   FACTORIZABLE Z(N) MODELS [J].
KOBERLE, R ;
SWIECA, JA .
PHYSICS LETTERS B, 1979, 86 (02) :209-210
[35]   DIAGONALIZATION OF GL(N) INVARIANT TRANSFER-MATRICES AND QUANTUM N-WAVE SYSTEM (LEE MODEL) [J].
KULISH, PP ;
RESHETIKHIN, NY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (16) :L591-L596
[36]   THE SCALING REGION OF THE TRICRITICAL ISING-MODEL IN 2 DIMENSIONS [J].
LASSIG, M ;
MUSSARDO, G ;
CARDY, JL .
NUCLEAR PHYSICS B, 1991, 348 (03) :591-618
[37]   POLYTOPES AND SOLITONS IN INTEGRABLE, N = 2 SUPERSYMMETRIC LANDAU-GINZBURG THEORIES [J].
LERCHE, W ;
WARNER, NP .
NUCLEAR PHYSICS B, 1991, 358 (03) :571-599
[38]  
Lewin L., 1981, POLYLOGARITHMS ASS F
[39]   ALGEBRAIC-GEOMETRY AND EFFECTIVE LAGRANGIANS [J].
MARTINEC, EJ .
PHYSICS LETTERS B, 1989, 217 (04) :431-437
[40]   INTEGRABLE PERTURBATIONS OF N = 2 SUPERCONFORMAL MINIMAL MODELS [J].
MATHIEU, P ;
WALTON, MA .
PHYSICS LETTERS B, 1991, 254 (1-2) :106-110