KERNEL ESTIMATION FOR ADDITIVE-MODELS UNDER DEPENDENCE

被引:7
作者
BAEK, J [1 ]
WEHRLY, TE [1 ]
机构
[1] TEXAS A&M UNIV SYST,DEPT STAT,COLL STN,TX 77843
关键词
MIXING CONDITIONS; NONPARAMETRIC REGRESSION; OPTIMAL RATE OF CONVERGENCE; TIME SERIES; NADARAYA-WATSON ESTIMATOR;
D O I
10.1016/0304-4149(93)90096-M
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonparametric estimation of the conditional mean function for additive models is investigated in cases where the observed data are dependent. We use an additive kernel estimator which is a sum of Nadaraya-Watson estimators. Under a strong mixing condition, the kernel estimator is shown to be asymptotically normal and to achieve the univariate optimal rate of convergence in mean squared error.
引用
收藏
页码:95 / 112
页数:18
相关论文
共 25 条
[1]  
BAEK J, 1992, KERNEL REGRESSION ES
[2]  
BIERENS HJ, 1983, J AM STAT ASSOC, V78, P699
[3]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[4]   ASYMPTOTIC-DISTRIBUTION OF ROBUST ESTIMATORS FOR NONPARAMETRIC MODELS FROM MIXING PROCESSES [J].
BOENTE, G ;
FRAIMAN, R .
ANNALS OF STATISTICS, 1990, 18 (02) :891-906
[5]  
BREIMAN L, 1985, J AM STAT ASSOC, V80, P580, DOI 10.2307/2288473
[6]  
BUJA A, 1989, ANN STAT, V17, P453, DOI 10.1214/aos/1176347115
[7]  
BUJA A, 1985, J AM STAT ASSOC, V80, P580
[8]   STRONG UNIFORM-CONVERGENCE RATES IN ROBUST NONPARAMETRIC TIME-SERIES ANALYSIS AND PREDICTION - KERNEL REGRESSION ESTIMATION FROM DEPENDENT OBSERVATIONS [J].
COLLOMB, G ;
HARDLE, W .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1986, 23 (01) :77-89
[9]  
Doukhan P., 1983, STOCH PROC APPL, V15, P271, DOI [10.1016/0304-4149(83)90036-4, DOI 10.1016/0304-4149(83)90036-4]
[10]  
Eubank R.L., 1988, SPLINE SMOOTHING NON