TSCHEBYSCHEFF PSEUDOSPECTRAL SOLUTION OF 2ND-ORDER ELLIPTIC-EQUATIONS WITH FINITE-ELEMENT PRECONDITIONING

被引:84
作者
DEVILLE, M
MUND, E
机构
[1] UNIV LIBRE BRUXELLES,SERV METROL NUCL,B-1050 BRUSSELS,BELGIUM
[2] CATHOLIC UNIV LOUVAIN,UNITE THERMODYNAM,B-1348 LOUVAIN LA NEUVE,BELGIUM
关键词
D O I
10.1016/0021-9991(85)90034-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:517 / 533
页数:17
相关论文
共 15 条
[1]  
CANUTO C, 1982, MATH COMPUT, V38, P67, DOI 10.1090/S0025-5718-1982-0637287-3
[2]  
CANUTO C, 1984, SIAM MONOGRAPH
[3]  
Ciarlet P, 1979, FINITE ELEMENT METHO
[4]  
DEVILLE M, 1982, J COMPUT APPL MATH, V8, P293
[5]  
GOTTLIEB D., 1977, CBMS NSF REGIONAL C, V26
[6]  
HAGEMAN LA, 1981, APPLIED ITERATIVE AN
[7]   TSCHEBYSCHEV 3-D SPECTRAL AND 2-D PSEUDOSPECTRAL SOLVERS FOR THE HELMHOLTZ-EQUATION [J].
HALDENWANG, P ;
LABROSSE, G ;
ABBOUDI, S ;
DEVILLE, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 55 (01) :115-128
[8]   SINGULARITIES IN FINITE-ELEMENT APPROXIMATION OF 2-DIMENSIONAL DIFFUSION PROBLEMS [J].
HENNART, JP ;
MUND, EH .
NUCLEAR SCIENCE AND ENGINEERING, 1977, 62 (01) :55-68
[9]  
Kellogg R. B., 1971, NUMERICAL SOLUTION P, P351
[10]   STABILITY OF THE FOURIER METHOD [J].
KREISS, HO ;
OLIGER, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (03) :421-433