ON RADIAL WEIGHTS FOR THE SPHERICAL SUMMATION OPERATOR

被引:17
作者
MOCKENHAUPT, G
机构
[1] Fachbereich Mathematik, Universität Siegen
关键词
D O I
10.1016/0022-1236(90)90051-L
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a sufficient condition for radial weights ω such that the spherical summation operator is bounded on L2(Rn, ω(x)dx), n ≥ 2. When applied to power weights, ω(x) = |x|x, these conditions are also necessary. Moreover, in the general case we shall show that our condition is almost necessary. Furthermore, we give an example which shows that the conjecture in Anderson (Proc. Amer. Math. Soc. 83, No. 2 (1981), 269-275) fails to hold. © 1990.
引用
收藏
页码:174 / 181
页数:8
相关论文
共 9 条
[1]   WEIGHTED INEQUALITIES FOR THE DISK MULTIPLIER [J].
ANDERSEN, KF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 83 (02) :269-275
[2]  
Erdelyi A., 1956, ASYMPTOTIC EXPANSION
[3]  
Fefferman C., 1971, ANN MATH, V94, P330
[4]  
Garcia-Cuerva J., 1985, WEIGHTED NORM INEQUA
[6]  
HIRSCHMAN I, 1961, DUKE MATH J, V28, P45
[7]  
STEIN E. M., 1971, INTRO FOURIER ANAL E
[8]  
Watson G.N., 1966, THEORY BESSEL FUNCTI, Vsecond
[9]  
[No title captured]