BETTER LOWER BOUNDS ON DETECTING AFFINE AND SPHERICAL DEGENERACIES

被引:23
作者
ERICKSON, J
SEIDEL, R
机构
[1] Computer Science Division, University of California, Berkeley, 94720, CA
关键词
D O I
10.1007/BF02574027
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that in the worst case, OMEGA(n(d)) sidedness queries are required to determine whether a set of n points in R(d) is affinely degenerate, i.e., whether it contains d + 1 points on a common hyperplane. This matches known upper bounds. We give a straightforward adversary argument, based on the explicit construction of a point set containing OMEGA(n(d)) ''collapsible'' simplices, any one of which can be made degenerate without changing the orientation of any other simplex. As an immediate corollary, we have an OMEGA(n(d)) lower bound on the number of sidedness queries required to determine the order type of a set of n points in R(d). Using similar techniques, we also show that OMEGA(n(d)+1 in-sphere queries are required to decide the existence of spherical degeneracies in a set of n points in R(d).
引用
收藏
页码:41 / 57
页数:17
相关论文
共 15 条
[1]   THE POWER OF GEOMETRIC DUALITY [J].
CHAZELLE, B ;
GUIBAS, LJ ;
LEE, DT .
BIT, 1985, 25 (01) :76-90
[2]   LOWER BOUNDS FOR SORTING OF SUMS [J].
DIETZFELBINGER, M .
THEORETICAL COMPUTER SCIENCE, 1989, 66 (02) :137-155
[3]   CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES WITH APPLICATIONS [J].
EDELSBRUNNER, H ;
OROURKE, J ;
SEIDEL, R .
SIAM JOURNAL ON COMPUTING, 1986, 15 (02) :341-363
[4]   ON THE ZONE THEOREM FOR HYPERPLANE ARRANGEMENTS [J].
EDELSBRUNNER, H ;
SEIDEL, R ;
SHARIR, M .
SIAM JOURNAL ON COMPUTING, 1993, 22 (02) :418-429
[5]  
EDELSBRUNNER H, 1991, J COMPUT SYST SCI, V42, P249
[6]  
EDELSBRUNNER H, 1987, EATCS MONOGRAPHS THE, V10
[7]  
ERICKSON J, 1993, 34 ANN IEEE S FDN CO, P528
[8]  
Fredman M. L., 1976, Theoretical Computer Science, V1, P355, DOI 10.1016/0304-3975(76)90078-5
[9]  
GAJENTAAN A, 1993, RUUCS9315 UTR U DEP
[10]  
Goodman Jacob E., 1990, J AM MATH SOC, V3, P639