FAST ALGORITHMS FOR APPROXIMATELY COUNTING MISMATCHES

被引:42
作者
KARLOFF, H
机构
[1] College of Computing, Georgia Institute of Technology, Atlanta
基金
美国国家科学基金会;
关键词
ALGORITHMS; PATTERN MATCHING; APPROXIMATION ALGORITHMS; RANDOMIZED ALGORITHMS;
D O I
10.1016/0020-0190(93)90177-B
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a text string T is-an-element-of SIGMA(n) and a pattern string P is-an-element-of SIGMA(m), for each i = 1, 2,...,n-m + 1 define f(i) to be the number of mismatches when the pattern is aligned below the text and starts in position i of the text. The fastest known algorithm to compute all the f(i)'s when the alphabet is arbitrary has worst-case time exceeding n square-root m. For any epsilon > 0, we give simple randomized and deterministic algorithms that compute g(i) such that f(i) less-than-or-equal-to g(i) less-than-or-equal-to f(i)(1 + epsilon) for all i. The algorithms run in time O((n/epsilon2) log(c)m) for a small universal constant c and are easy reductions from the case of arbitrary SIGMA to the case of SIGMA = (0, 1}.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 11 条
[1]   GENERALIZED STRING MATCHING [J].
ABRAHAMSON, K .
SIAM JOURNAL ON COMPUTING, 1987, 16 (06) :1039-1051
[2]   SIMPLE CONSTRUCTIONS OF ALMOST K-WISE INDEPENDENT RANDOM-VARIABLES [J].
ALON, N ;
GOLDREICH, O ;
HASTAD, J ;
PERALTA, R .
RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (03) :289-304
[3]   ADDITION [J].
ALON, N .
RANDOM STRUCTURES & ALGORITHMS, 1993, 4 (01) :119-120
[4]  
ATALLAH M, 1992, 3RD P COMB PATT MATC
[5]  
BABAI L, 1992, LINEAAR ALGEBRA METH, P20
[6]  
Fischer M.J., 1974, SIAM AMS P, V7, P113
[7]  
KNUTH DE, 1981, ART COMPUTER PROGRAM, V2, P290
[8]  
NAOR J, 1990, 22ND P ANN ACM S THE, P213
[9]  
NIVEN I, 1980, INTRO THEORY NUMBERS, P224
[10]  
SPENCER J, 1987, 10 LECTURES PROBALIS, P29