CONDUCTANCE AND CONDUCTANCE FLUCTUATIONS OF MESOSCOPIC SYSTEMS WITH DIFFERENT SYMMETRIES - A STATISTICAL SCATTERING-THEORY APPROACH

被引:20
作者
ALTLAND, A
机构
[1] Max Planck Institut für Kernphysik, Heidelberg, W-6900
来源
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER | 1991年 / 82卷 / 01期
关键词
D O I
10.1007/BF01313992
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A theoretical model of mesoscopic systems, recently introduced by Iida et al. (IWZ), is extended to the case of systems with spin dependent interactions and systems of broken time reversal invariance. The quantum mechanical time reversal operator is represented by an operator acting in a space of abstract matrix fields. Thereby, the discussion of systems with different time reversal behaviour can be unified almost entirely. We recast the IWZ-model in a new parametrization, which is more closely related to other field theoretic models of mesoscopic systems, than the original one.
引用
收藏
页码:105 / 113
页数:9
相关论文
共 13 条
  • [1] ALTLAND A, IN PRESS ENERGY CORR
  • [2] ALTSHULER BL, NORDITA PREPRINT
  • [3] [Anonymous], 1967, RANDOM MATRICES
  • [4] GENERALIZED MANY-CHANNEL CONDUCTANCE FORMULA WITH APPLICATION TO SMALL RINGS
    BUTTIKER, M
    IMRY, Y
    LANDAUER, R
    PINHAS, S
    [J]. PHYSICAL REVIEW B, 1985, 31 (10): : 6207 - 6215
  • [5] EVETOV KB, 1983, ADV PHYS, V32, P53
  • [6] IIDA S, IN PRESS ANN PHYS NY
  • [7] UNIVERSAL CONDUCTANCE FLUCTUATIONS IN METALS - EFFECTS OF FINITE TEMPERATURE, INTERACTIONS, AND MAGNETIC-FIELD
    LEE, PA
    STONE, AD
    FUKUYAMA, H
    [J]. PHYSICAL REVIEW B, 1987, 35 (03) : 1039 - 1070
  • [8] RANDOM-MATRIX THEORY AND UNIVERSAL STATISTICS FOR DISORDERED QUANTUM CONDUCTORS
    MUTTALIB, KA
    PICHARD, JL
    STONE, AD
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (21) : 2475 - 2478
  • [9] NISHIOKA H, 1986, ANN PHYS-NEW YORK, V67, P172
  • [10] GRASSMANN INTEGRATION IN STOCHASTIC QUANTUM PHYSICS - THE CASE OF COMPOUND NUCLEUS SCATTERING
    VERBAARSCHOT, JJM
    WEIDENMULLER, HA
    ZIRNBAUER, MR
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 129 (06): : 367 - 438