LOCALIZATION FOR A CLASS OF ONE-DIMENSIONAL QUASI-PERIODIC SCHRODINGER-OPERATORS

被引:148
作者
FROHLICH, J
SPENCER, T
WITTWER, P
机构
[1] INST ADV STUDY,SCH MATH,PRINCETON,NJ 08540
[2] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
关键词
D O I
10.1007/BF02277997
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove for small e{open} and α satisfying a certain Diophantine condition the operator {Mathematical expression} has pure point spectrum for almost all θ. A similar result is established at low energy for {Mathematical expression} provided K is sufficiently large. © 1990 Springer-Verlag.
引用
收藏
页码:5 / 25
页数:21
相关论文
共 15 条
[1]  
Aubry S., 1978, SOLID STATE SCI SOLI, V8, P264
[2]   ALMOST PERIODIC SCHRODINGER-OPERATORS .2. THE INTEGRATED DENSITY OF STATES [J].
AVRON, J ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (01) :369-391
[3]   A METAL-INSULATOR-TRANSITION FOR THE ALMOST MATHIEU MODEL [J].
BELLISSARD, J ;
LIMA, R ;
TESTARD, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (02) :207-234
[4]  
Berezanski1 J. M., 1968, TRANSL MATH MONOGRAP, V17
[5]   ABSENCE OF LOCALIZATION IN THE ALMOST MATHIEU EQUATION [J].
DELYON, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (01) :L21-L23
[6]  
Dinaburg E. I., 1975, FUNKT ANAL PRILOZHEN, P279, DOI [DOI 10.1007/BF01075873, 10.1007/BF01075873]
[7]   ABSENCE OF DIFFUSION IN THE ANDERSON TIGHT-BINDING MODEL FOR LARGE DISORDER OR LOW-ENERGY [J].
FROHLICH, J ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (02) :151-184
[8]   CONSTRUCTIVE PROOF OF LOCALIZATION IN THE ANDERSON TIGHT-BINDING MODEL [J].
FROHLICH, J ;
MARTINELLI, F ;
SCOPPOLA, E ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (01) :21-46
[10]   UNIVERSAL LOWER BOUNDS ON EIGENVALUE SPLITTINGS FOR ONE DIMENSIONAL SCHRODINGER-OPERATORS [J].
KIRSCH, W ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 97 (03) :453-460