ESTIMATION, PRINCIPAL COMPONENTS AND HAMILTONIAN-SYSTEMS

被引:8
作者
BLOCH, A [1 ]
机构
[1] HARVARD UNIV,DIV APPL SCI,CAMBRIDGE,MA 02138
关键词
D O I
10.1016/0167-6911(85)90005-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we show how symplectic geometry can be used to analyze a fundamental problem in estimation theory - the fitting of lines and planes to a data set in n dimensions. Symplectic methods yield information not only on the critical point structure of the Maximum Likelihood Estimation (MLE) function, but also on the asymmetries in the distribution of the data points in n-space.
引用
收藏
页码:103 / 108
页数:6
相关论文
共 26 条
[1]   COMPLETELY INTEGRABLE SYSTEMS, EUCLIDEAN LIE-ALGEBRAS, AND CURVES [J].
ADLER, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1980, 38 (03) :267-317
[2]  
AMARI S, METR841 U TOK MATH E
[3]  
Arnold V. I, 1989, MATH METHODS CLASSIC, VSecond, DOI DOI 10.1007/978-1-4757-1693-1
[4]   CONVEXITY AND COMMUTING HAMILTONIANS [J].
ATIYAH, MF .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (JAN) :1-15
[5]  
BLOCH AM, UNPUB B AM MATH SOC
[6]  
BLOCH AM, THESIS HARVARD U
[7]  
BYRNES CI, UNPUB INVENT MATH
[8]   ON THE VARIATION IN THE CO-HOMOLOGY OF THE SYMPLECTIC FORM OF THE REDUCED PHASE-SPACE [J].
DUISTERMAAT, JJ ;
HECKMAN, GJ .
INVENTIONES MATHEMATICAE, 1982, 69 (02) :259-268
[9]  
DURBIN J, 1951, BIOMETRIKA, V38, P150
[10]   DEFINING CURVATURE OF A STATISTICAL PROBLEM (WITH APPLICATIONS TO 2ND ORDER EFFICIENCY) [J].
EFRON, B .
ANNALS OF STATISTICS, 1975, 3 (06) :1189-1217