FOURIER-OPTICS APPROACH TO THE SYMPLECTIC GROUP

被引:5
作者
KAUDERER, M
机构
[1] Division of Engineering, University of Texas at San Antonio, San Antonio, TX
来源
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION | 1990年 / 7卷 / 02期
关键词
D O I
10.1364/JOSAA.7.000231
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The n-dimensional symplectic group is discussed and classified in terms of operators for the first time to my knowledge. The symplectic embedding theorem is proved by using Kronecker block multiplication. In addition, the fundamental relation of Fourier optics is proved. It follows that all operator relations have been proved for Fourier optics. In combination with a previous result, the decomposition theorem for nonsingular matrices [J. Math. Phys. 12,1772 (1971)], which is extended here somewhat, it follows that Fourier optics (excluding the phase- conjugate operator) is isomorphic to the symplectic group, the group of linear canonical transforms, and the group of first-order systems. This implies that every mathematical result concerning the symplectic group can be understood simply as a property of ideal cylindrical lenses under the paraxial approximation. © 1990 Optical Society of America.
引用
收藏
页码:231 / 239
页数:9
相关论文
共 16 条
[1]  
ARNAUD JA, 1973, PROGR OPTICS, V11
[3]  
Horn R.A., 1986, MATRIX ANAL
[4]  
KAUDERER M, 1989, OCT ANN M OPT SOC AM
[5]  
KAUDERER M, UNPUB APPL OPT
[6]  
KAUDERER M, 1988, THESIS U TEXAS AUSTI
[7]   3-DIMENSIONAL FOURIER OPTICS - THE LINEAR SCALAR TRANSFER-FUNCTION [J].
KAUDERER, MH .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1989, 6 (09) :1304-1307
[8]  
KAUDERER MH, IN PRESS J OPT SOC A
[9]  
Luneburg R. K., 1964, MATH THEORY OPTICS
[10]   MATRIX DECOMPOSITIONS FOR NONSYMMETRICAL OPTICAL-SYSTEMS [J].
MACUKOW, B ;
ARSENAULT, HH .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1983, 73 (10) :1360-1366