THE NOETHER THEOREM FOR GEOMETRIC ACTIONS AND AREA PRESERVING DIFFEOMORPHISMS ON THE TORUS

被引:11
作者
ARATYN, H
NISSIMOV, E
PACHEVA, S
ZIMERMAN, AH
机构
[1] WEIZMANN INST SCI,DEPT PHYS,IL-76100 REHOVOT,ISRAEL
[2] UNIV NACL ESTADUAL SAO PAULO,INST FIS TEOR,BR-01405 SAO PAULO,SP,BRAZIL
关键词
D O I
10.1016/0370-2693(90)91778-A
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We find that within the formalism of coadjoint orbits of the infinite dimensional Lie group the Noether procedure leads, for a special class of transformations, to the constant of motion given by the fundamental group one-cocycle S. Use is made of the simplified formula giving the symplectic action in terms of S and the Maurer-Cartan one-form. The area preserving diffeomorphisms on the torus T2=S1⊗S1 constitute an algebra with central extension, given by the Floratos-Iliopoulos cocycle. We apply our general treatment based on the symplectic analysis of coadjoint orbits of Lie groups to write the symplectic action for this model and study its invariance. We find an interesting abelian symmetry structure of this non-linear problem. © 1990.
引用
收藏
页码:377 / 382
页数:6
相关论文
共 21 条
[1]   PATH INTEGRAL QUANTIZATION OF THE COADJOINT ORBITS OF THE VIRASORO GROUP AND 2-D GRAVITY [J].
ALEKSEEV, A ;
SHATASHVILI, S .
NUCLEAR PHYSICS B, 1989, 323 (03) :719-733
[2]  
ALEKSEEV A, IN PRESS J GEOM PHYS
[3]   NEW REALIZATIONS OF THE VIRASORO ALGEBRA AS MEMBRANE SYMMETRIES [J].
ANTONIADIS, I ;
DITSAS, P ;
FLORATOS, E ;
ILIOPOULOS, J .
NUCLEAR PHYSICS B, 1988, 300 (04) :549-558
[4]   SYMPLECTIC ACTIONS ON COADJOINT ORBITS [J].
ARATYN, H ;
NISSIMOV, E ;
PACHEVA, S ;
ZIMERMAN, AH .
PHYSICS LETTERS B, 1990, 240 (1-2) :127-132
[5]  
ARNOLD VI, 1969, ANN I FOURIER, V16, P319
[6]   HIDDEN SL(N) SYMMETRY IN CONFORMAL FIELD-THEORIES [J].
BERSHADSKY, M ;
OOGURI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 126 (01) :49-83
[7]   INFINITE DIMENSIONAL MATRIX ALGEBRAS [J].
BORDEMANN, M ;
HOPPE, J ;
SCHALLER, P .
PHYSICS LETTERS B, 1989, 232 (02) :199-203
[8]  
DELIUS GW, ITPSB8971 STON BROOK
[9]   TRIGONOMETRIC STRUCTURE CONSTANTS FOR NEW INFINITE-DIMENSIONAL ALGEBRAS [J].
FAIRLIE, DB ;
FLETCHER, P ;
ZACHOS, CK .
PHYSICS LETTERS B, 1989, 218 (02) :203-206
[10]   A NOTE ON THE CLASSICAL SYMMETRIES OF THE CLOSED BOSONIC MEMBRANES [J].
FLORATOS, EG ;
ILIOPOULOS, J .
PHYSICS LETTERS B, 1988, 201 (02) :237-240