STRESS-INDUCED FLUID-FLOW ANISOTROPY IN FRACTURED ROCK

被引:47
作者
SAYERS, CM
机构
[1] Koninklijke/Shell Exploratie en Produktie Laboratorium, Rijswijk
关键词
fractured reservoirs; Permeability; stress-dependent fluid flow; tight gas sands;
D O I
10.1007/BF00140017
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Anisotropic stress states are common in the upper crust and result in fracture apertures being dependent on fracture orientation. Fractured rocks should therefore display an anisotropic permeability determined by the aperture, length, and orientation of those fractures remaining open. In this paper, a numerical study of this effect is made for a rock containing two orthogonal fracture sets subject to a uniaxial compressive stress applied perpendicular to one of the sets. With increasing compressive stress, the decreasing aperture of fractures orientated perpendicular to the stress axis leads to a decrease in permeability both parallel and perpendicular to the stress. For flow parallel to the stress direction, this is a consequence of the finite length of the fractures, flow in fractures perpendicular to the stress being required to connect fractures orientated parallel to the stress direction. As the number of fractures is decreased towards the percolation threshold, the average permeability tensor is found to become increasingly isotropic. This behaviour results from the highly tortuous nature of the flow paths just at the percolation threshold. © 1990 Shell Research BV.
引用
收藏
页码:287 / 297
页数:11
相关论文
共 18 条
[1]  
Balberg I., Binenbaum N., Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks, Phys. Rev. B, 28, pp. 3799-3812, (1983)
[2]  
Bernasconi J., Conduction in anisotropic disordered systems: Effective medium theory, Phys. Rev. B, 9, pp. 4575-4579, (1974)
[3]  
Brace W.F., A note on permeability changes in geological material due to stress, Pageoph, 116, pp. 627-633, (1978)
[4]  
Brower K.R., Morrow N.R., Fluid flow in cracks as related to low-permeability gas sands, Soc. Petroleum Eng. J., 25, pp. 191-201, (1985)
[5]  
Charlaix E., Percolation threshold of a random array of discs: a numerical simulation, J. Phys. A, 19, pp. L351-L354, (1986)
[6]  
Dienes J.K., Permeability, percolation and statistical crack mechanics, Issues in Rock Mechanics, pp. 86-94, (1982)
[7]  
Englman R., Gur Y., Jaeger Z., Fluid flow through a crack network in rocks, J. Appl. Mech., 50, pp. 707-711, (1983)
[8]  
Gale J.E., A numerical field and laboratory study of flow in rocks with deformable fractures, (1975)
[9]  
Gueguen Y., David C., Darot M., Models and time constants for permeability evolution, Geophysical Research Letters, 13, pp. 460-463, (1986)
[10]  
Gueguen Y., Darot M., Reuschle T., Permeability evolution under stress, Migration of Hydrocarbons in Sedimentary Basins, pp. 281-295, (1987)