BLACK-HOLE ENTROPY AND THE DIMENSIONAL CONTINUATION OF THE GAUSS-BONNET THEOREM

被引:179
作者
BANADOS, M
TEITELBOIM, C
ZANELLI, J
机构
[1] INST ADV STUDY,PRINCETON,NJ 08540
[2] UNIV CHILE,FAC CIENCIAS,DEPT FIS,SANTIAGO,CHILE
关键词
D O I
10.1103/PhysRevLett.72.957
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Euclidean black hole has topology R(2) x S-d-2. It is shown that, the Einstein's theory, the deficit angle of a cusp at any point in R(2) and the area of the S-d-2 are canonical conjugates. The black hole entropy emerges as the Euler class of a small disk centered at the horizon multiplied by the area of the S-d-2 there. These results are obtained through dimensional continuation of the Gauss-Bonnet theorem. The extension of the most general action yielding second order field equations for the metric in any spacetime dimension is given.
引用
收藏
页码:957 / 960
页数:4
相关论文
共 10 条
[1]   DIMENSIONALLY CONTINUED BLACK-HOLES [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW D, 1994, 49 (02) :975-986
[2]  
CARLIP S, IN PRESS OFF SHELL B
[3]   VARIATIONAL-PRINCIPLES FOR NONSMOOTH METRICS [J].
HAYWARD, G ;
LOUKO, J .
PHYSICAL REVIEW D, 1990, 42 (12) :4032-4041
[4]   BLACK-HOLE ENTROPY AND HIGHER-CURVATURE INTERACTIONS [J].
JACOBSON, T ;
MYERS, RC .
PHYSICAL REVIEW LETTERS, 1993, 70 (24) :3684-3687
[5]   EINSTEIN TENSOR AND ITS GENERALIZATIONS [J].
LOVELOCK, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (03) :498-&
[6]   ROLE OF SURFACE INTEGRALS IN HAMILTONIAN FORMULATION OF GENERAL RELATIVITY [J].
REGGE, T ;
TEITELBOIM, C .
ANNALS OF PHYSICS, 1974, 88 (01) :286-318
[7]  
SUSSKIND L, RU9344 RUTG REP
[8]   DIMENSIONALLY CONTINUED TOPOLOGICAL GRAVITATION THEORY IN HAMILTONIAN FORM [J].
TEITELBOIM, C ;
ZANELLI, J .
CLASSICAL AND QUANTUM GRAVITY, 1987, 4 (04) :L125-L129
[9]  
TEITELBOIM C, 1987, CONSTRAINT THEORY RE, P15013
[10]  
ZUMINO B, 1986, PHYS REP, V137, P108