BASE-INVARIANCE IMPLIES BENFORDS LAW

被引:134
作者
HILL, TP
机构
关键词
FIRST-DIGIT PROBLEM; BASE-INVARIANCE; SCALE-INVARIANCE; BENFORDS LAW; INVARIANT MEASURE; NTH DIGIT LAW;
D O I
10.2307/2160815
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A derivation of Benford's Law or the First-Digit Phenomenon is given assuming only base-invariance of the underlying law. The only base-invariant distributions are shown to be convex combinations of two extremal probabilities, one corresponding to point mass and the other a log-lebesgue measure. The main tools in the proof are identification of an appropriate mantissa sigma-algebra on the positive reals, and results for invariant measures on the circle.
引用
收藏
页码:887 / 895
页数:9
相关论文
共 9 条
[1]  
Benford F., 1938, P AM PHIL SOC, V78, P551
[2]   EXPLANATION OF 1ST DIGIT PHENOMENON [J].
COHEN, DIA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1976, 20 (03) :367-370
[3]  
Durrett R, 1991, PROBABILITY THEORY E
[4]  
Feller W., 1968, INTRO PROBABILITY TH, V2
[5]   ON PROBABILITY THAT A RANDOM INTEGER HAS INITIAL DIGIT 4 [J].
FLEHINGER, BJ .
AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (10) :1056-+
[6]  
Newcomb S., 1881, AM J MATH, V4, P39, DOI [10.2307/2369148, DOI 10.2307/2369148]
[7]   ON DISTRIBUTION OF FIRST SIGNIFICANT DIGITS [J].
PINKHAM, RS .
ANNALS OF MATHEMATICAL STATISTICS, 1961, 32 :1223-&
[8]   PECULIAR DISTRIBUTION OF FIRST DIGITS [J].
RAIMI, RA .
SCIENTIFIC AMERICAN, 1969, 221 (06) :109-&
[9]   1ST DIGIT PROBLEM [J].
RAIMI, RA .
AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (07) :521-538