A GEOMETRIC CHARACTERIZATION OF THE REACHABLE AND THE CONTROLLABLE SUBSPACES OF DESCRIPTOR SYSTEMS

被引:37
作者
OZCALDIRAN, K
机构
[1] Georgia Inst of Technology, Atlanta,, GA, USA, Georgia Inst of Technology, Atlanta, GA, USA
关键词
MATHEMATICAL TECHNIQUES - State Space Methods;
D O I
10.1007/BF01600185
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The concepts of left brace A,E,R(B) right brace and restricted left brace E,A,R(B) right brace invariance are introduced. The reachable subspace of a descriptor system is shown to be the supremal left brace A,E,R(B) right brace -invariant subspace contained in the least restricted left brace E,A,R(B) right brace subspace of R**n. Algorithms to compute the reachable subspace of a descriptor system E(dx/dt) equals Ax plus Bu in terms of E,A and B are given. A new proof of the feedback invariance of the reachable subspace is presented.
引用
收藏
页码:37 / 48
页数:12
相关论文
共 12 条
[1]  
ARMENTANO VA, 1984, 23RD P IEEE C DEC CO, P1507
[2]   SINGULAR PERTURBATION OF AUTONOMOUS LINEAR-SYSTEMS [J].
CAMPBELL, SL ;
ROSE, NJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (03) :542-551
[3]  
COBB JD, 1980, THESIS U ILLINOIS
[4]  
Gantmacher F. R., 1960, THEORY MATRICES, V1
[5]  
OZCALDIRAN K, 1985, THESIS GEORGIA I TEC
[6]   STRUCTURAL-PROPERTIES OF LINEAR DYNAMICAL-SYSTEMS [J].
ROSENBROCK, HH .
INTERNATIONAL JOURNAL OF CONTROL, 1974, 20 (02) :191-202
[7]  
Verghese G., 1978, THESIS STANFORD U
[8]   A GENERALIZED STATE-SPACE FOR SINGULAR SYSTEMS [J].
VERGHESE, GC ;
LEVY, BC ;
KAILATH, T .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (04) :811-831
[9]  
VERGHESE GC, 1981, P JACC CHARLOTTESVIL
[10]   EIGENVALUE PROBLEM GAMMA-TX + SX [J].
WONG, KT .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 16 (02) :270-280