DNA SUBSTRATE REQUIREMENTS FOR DIFFERENT ACTIVITIES OF THE HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 INTEGRASE PROTEIN

被引:48
作者
VANDENENT, FMI [1 ]
VINK, C [1 ]
PLASTERK, RHA [1 ]
机构
[1] NETHERLANDS CANC INST,DIV MOLEC BIOL,1066 CX AMSTERDAM,NETHERLANDS
关键词
D O I
10.1128/JVI.68.12.7825-7832.1994
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The integrase protein (IN) of human immunodeficiency virus type 1 removes two nucleotides from both 3' ends of the viral DNA (donor cleavage) and subsequently couples the newly generated 3' OH groups to phosphates in the target DNA (integration). The sequence requirements of IN for cleavage as well as far integration of viral DNA substrates have previously been studied by mutational analyses and by adduct interference assays. We extended these studies by analysis of heteroduplex oligonucleotide substrates and by missing-base analysis. We found for some base pairs that mutation of only one of the two bases and not the other affected IN activity. These base pairs center around the cleavage site. Besides donor cleavage and integration, IN can also perform ''intermolecular disintegration,'' which has been described as the reversal of the integration reaction. We found that this reaction is independent of viral DNA sequences. In addition, the optimum spacing between the integration sites in intermolecular disintegration does not reflect the spacing found in vivo. These results indicate that this reaction is not the exact reversal of integration but rather is a sequence-independent phosphoryl transfer reaction between gapped DNA duplex molecules.
引用
收藏
页码:7825 / 7832
页数:8
相关论文
共 33 条
[1]   MISSING CONTACT PROBING OF DNA-PROTEIN INTERACTIONS [J].
BRUNELLE, A ;
SCHLEIF, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (19) :6673-6676
[2]   SEQUENCE REQUIREMENTS FOR INTEGRATION OF MOLONEY MURINE LEUKEMIA-VIRUS DNA INVITRO [J].
BUSHMAN, FD ;
CRAIGIE, R .
JOURNAL OF VIROLOGY, 1990, 64 (11) :5645-5648
[3]   INTEGRATION OF HUMAN-IMMUNODEFICIENCY-VIRUS DNA - ADDUCT INTERFERENCE ANALYSIS OF REQUIRED DNA SITES [J].
BUSHMAN, FD ;
CRAIGIE, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (08) :3458-3462
[4]   DOMAINS OF THE INTEGRASE PROTEIN OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 RESPONSIBLE FOR POLYNUCLEOTIDYL TRANSFER AND ZINC-BINDING [J].
BUSHMAN, FD ;
ENGELMAN, A ;
PALMER, I ;
WINGFIELD, P ;
CRAIGIE, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (08) :3428-3432
[5]   SUBSTRATE FEATURES IMPORTANT FOR RECOGNITION AND CATALYSIS BY HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 INTEGRASE IDENTIFIED BY USING NOVEL DNA SUBSTRATES [J].
CHOW, SA ;
BROWN, PO .
JOURNAL OF VIROLOGY, 1994, 68 (06) :3896-3907
[6]   REVERSAL OF INTEGRATION AND DNA SPLICING MEDIATED BY INTEGRASE OF HUMAN-IMMUNODEFICIENCY-VIRUS [J].
CHOW, SA ;
VINCENT, KA ;
ELLISON, V ;
BROWN, PO .
SCIENCE, 1992, 255 (5045) :723-726
[7]  
CHOW SN, COMMUNICATION
[8]   THE IN PROTEIN OF MOLONEY MURINE LEUKEMIA-VIRUS PROCESSES THE VIRAL-DNA ENDS AND ACCOMPLISHES THEIR INTEGRATION INVITRO [J].
CRAIGIE, R ;
FUJIWARA, T ;
BUSHMAN, F .
CELL, 1990, 62 (04) :829-837
[9]   HIV-1 DNA INTEGRATION - MECHANISM OF VIRAL-DNA CLEAVAGE AND DNA STRAND TRANSFER [J].
ENGELMAN, A ;
MIZUUCHI, K ;
CRAIGIE, R .
CELL, 1991, 67 (06) :1211-1221
[10]  
JONSSON CB, 1993, J BIOL CHEM, V268, P1462