THE CHEBYSHEV LEGENDRE METHOD - IMPLEMENTING LEGENDRE METHODS ON CHEBYSHEV POINTS

被引:67
作者
DON, WS
GOTTLIEB, D
机构
[1] Brown Univ, Providence, RI
关键词
CHEBYSHEV LEGENDRE; PENALTY METHOD; DIFFERENTIATION MATRIX; STABILITY;
D O I
10.1137/0731079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new collocation method for the numerical solution of partial differential equations is presented. This method uses the Chebyshev collocation points, but, because of the way the boundary conditions are implemented, it has all the advantages of the Legendre methods. In particular L2 estimates can be easily obtained for hyperbolic and parabolic problems.
引用
收藏
页码:1519 / 1534
页数:16
相关论文
共 12 条
[1]   A FAST ALGORITHM FOR THE EVALUATION OF LEGENDRE EXPANSIONS [J].
ALPERT, BK ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (01) :158-179
[2]  
Canuto C., 2011, SPECTRAL METHODS FLU
[3]  
Erdelyi A., 1981, HIGHER TRANSCENDENTA
[4]  
FUNARO D, 1988, MATH COMPUT, V51, P599, DOI 10.1090/S0025-5718-1988-0958637-X
[5]  
FUNARO D, 1991, MATH COMPUT, V57, P585, DOI 10.1090/S0025-5718-1991-1094950-6
[6]  
Funaro D., 1992, POLYNOMIAL APPROXIMA
[7]  
GOTTLIEB D, 1981, MATH COMPUT, V36, P107, DOI 10.1090/S0025-5718-1981-0595045-1
[8]  
GOTTLIEB D, 1977, STABILITY PSUEDOSPEC
[9]  
Gottlieb D., 1977, CBMS NSF REGIONAL C
[10]  
GOTTLIEB D, 1984, THEORY APPL SPECTRAL, P1