FACTORS RELEVANT TO THE PRODUCTION OF (R)-(+)-GLYCIDOL (2,3-EPOXY-1-PROPANOL) FROM RACEMIC GLYCIDOL BY ENANTIOSELECTIVE OXIDATION WITH ACETOBACTER-PASTEURIANUS ATCC-12874

被引:24
作者
GEERLOF, A
JONGEJAN, JA
VANDOOREN, TJGM
RAEMAKERSFRANKEN, PC
VANDENTWEEL, WJJ
DUINE, JA
机构
[1] DELFT UNIV TECHNOL,DEPT MICROBIOL & ENZYMOL,2628 BC DELFT,NETHERLANDS
[2] DSM RES BV,BIOORGAN CHEM SECT,6160 MD GELEEN,NETHERLANDS
关键词
RACEMIC GLYCIDOL; OXIDATION; ENANTIOSELECTIVITY; ACETOBACTER PASTEURIANUS;
D O I
10.1016/0141-0229(94)90143-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Acetobacter pasteurianus oxidizes glycidol with high activity, comparable to the oxidation of ethanol. The organism has a preference for the S-enantiomer, and the kinetic resolution process obeys a simple relationship, indicating an enantiomeric ratio (E) of 19. The compound is converted into glycidic acid, although a transient accumulation of glycidaldehyde occurs initially. Determination of other parameters revealed a temperature optimum of 50 degrees C, long-term stability (cells in the resting state), and a pH optimum compatible with the chemical stability of glycidol. However, it was also noted that respiration rates decrease at concentrations of glycidol above 1 M. This is most likely caused by substrate inhibition of the glycidol-oxidizing enzyme, the quinohemoprotein ethanol dehydrogenase. Comparison with existing methods for enantiomerically pure glycidol production indicated a number of attractive points for the method described here, although definitive evaluation must await further studies on the long-term stability under process conditions, reusability of the cells, and the mechanism of glycidol inhibition.
引用
收藏
页码:1059 / 1063
页数:5
相关论文
共 23 条
[1]  
Asai T., 1968, ACETIC ACID BACTERIA
[2]   TOTAL SYNTHESIS OF (+)-LEUKOTRIENE B4 METHYL-ESTER AND ITS 5-EPIMER FROM (R)-GLYCIDOL [J].
AVIGNONTROPIS, M ;
TREILHOU, M ;
POUGNY, JR ;
FRECHARDORTUNO, I ;
LINSTRUMELLE, G .
TETRAHEDRON, 1991, 47 (35) :7279-7286
[3]  
Bhadra A., 1985, COMPREHENSIVE BIOTEC, V3, P701
[4]   QUANTITATIVE-ANALYSES OF BIOCHEMICAL KINETIC RESOLUTIONS OF ENANTIOMERS [J].
CHEN, CS ;
FUJIMOTO, Y ;
GIRDAUKAS, G ;
SIH, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1982, 104 (25) :7294-7299
[5]   STUDIES ON THE METABOLISM OF ACETOBACTER-PEROXYDANS .2. THE ENZYMIC MECHANISM OF LACTATE METABOLISM [J].
DELEY, J ;
SCHEL, J .
BIOCHIMICA ET BIOPHYSICA ACTA, 1959, 35 (01) :154-165
[6]   CATALYTIC ASYMMETRIC EPOXIDATION AND KINETIC RESOLUTION - MODIFIED PROCEDURES INCLUDING INSITU DERIVATIZATION [J].
GAO, Y ;
HANSON, RM ;
KLUNDER, JM ;
KO, SY ;
MASAMUNE, H ;
SHARPLESS, KB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109 (19) :5765-5780
[7]   METHODS FOR THE DETERMINATION OF THE ENANTIOMERIC PURITY OF THE C3-SYNTHONS GLYCIDOL (2,3-EPOXY-1-PROPANOL) AND SOLKETAL [2,2-DIMETYL-4-(HYDROXYMETHYL)-1,3-DIOXOLANE] [J].
GEERLOF, A ;
VANTOL, JBA ;
JONGEJAN, JA ;
DUINE, JA .
JOURNAL OF CHROMATOGRAPHY, 1993, 648 (01) :119-129
[8]   ENANTIOSELECTIVE CONVERSIONS OF THE RACEMIC C-3-ALCOHOL SYNTHONS, GLYCIDOL (2,3-EPOXY-1-PROPANOL), AND SOLKETAL (2,2-DIMETHYL-4-(HYDROXYMETHYL)-1,3-DIOXOLANE) BY QUINOHEMOPROTEIN ALCOHOL DEHYDROGENASES AND BACTERIA CONTAINING SUCH ENZYMES [J].
GEERLOF, A ;
VANTOL, JBA ;
JONGEJAN, JA ;
DUINE, JA .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 1994, 58 (06) :1028-1036
[9]   LIPASES IN THE PREPARATION OF BETA-BLOCKERS [J].
KLOOSTERMAN, M ;
ELFERINK, VHM ;
VANIERSEL, J ;
ROSKAM, JH ;
MEIJER, EM ;
HULSHOF, LA ;
SHELDON, RA .
TRENDS IN BIOTECHNOLOGY, 1988, 6 (10) :251-256
[10]   ASYMMETRIC EPOXIDATION OF ALLYL ALCOHOL - EFFICIENT ROUTES TO HOMOCHIRAL BETA-ADRENERGIC BLOCKING-AGENTS [J].
KLUNDER, JM ;
KO, SY ;
SHARPLESS, KB .
JOURNAL OF ORGANIC CHEMISTRY, 1986, 51 (19) :3710-3712