DISSIPATIVE MODULATION INSTABILITY IN A NONLINEAR DISPERSIVE RING CAVITY

被引:292
作者
HAELTERMAN, M [1 ]
TRILLO, S [1 ]
WABNITZ, S [1 ]
机构
[1] UNIV LIBRE BRUXELLES,SERV OPT THEOR & APPL,B-1050 BRUSSELS,BELGIUM
关键词
D O I
10.1016/0030-4018(92)90367-Z
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the modulational instability in a synchronously pumped nonlinear dispersive ring cavity. The infinite-dimensional Ikeda map which describes the evolution of the field in the cavity is reduced to a partial derivative equation which allows for analytical developments. We show that, owing to the dissipative nature of the problem, the physics of modulational instability in the ring is fundamentally different from the usual modulational instability in a nonlinear dispersive fiber. In particular, we predict the formation of stable temporal dissipative structures for both the normal and the anomalous dispersion regime of the fiber.
引用
收藏
页码:401 / 407
页数:7
相关论文
共 18 条
[1]   SOLITARY WAVES AS FIXED-POINTS OF INFINITE-DIMENSIONAL MAPS FOR AN OPTICAL BISTABLE RING CAVITY - ANALYSIS [J].
ADACHIHARA, H ;
MCLAUGHLIN, DW ;
MOLONEY, JV ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (01) :63-85
[2]  
[Anonymous], 1983, COMPUTATIONAL METHOD
[3]  
BESPALOV VI, 1966, JETP LETT-USSR, V3, P307
[4]   GLOBAL AND LOCAL CHAOS IN THE PUMPED NONLINEAR SCHRODINGER-EQUATION [J].
BLOW, KJ ;
DORAN, NJ .
PHYSICAL REVIEW LETTERS, 1984, 52 (07) :526-529
[5]  
GIBBS HM, 1976, PHYS REV LETT, V36, P113
[6]  
GRAHAM GS, 1990, J OPT SOC AM B, V7, P1328
[7]   TRANSVERSE EFFECTS IN NONLINEAR PLANAR RESONATORS .1. MODAL-THEORY [J].
HAELTERMAN, M ;
VITRANT, G ;
REINISCH, R .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1990, 7 (07) :1309-1318
[8]   GUIDING-CENTER SOLITON IN OPTICAL FIBERS [J].
HASEGAWA, A ;
KODAMA, Y .
OPTICS LETTERS, 1990, 15 (24) :1443-1445
[9]   GENERATION OF A TRAIN OF SOLITON PULSES BY INDUCED MODULATIONAL INSTABILITY IN OPTICAL FIBERS [J].
HASEGAWA, A .
OPTICS LETTERS, 1984, 9 (07) :288-290
[10]  
Infeld E., 1990, NONLINEAR WAVES SOLI