UNIFORM DONSKER CLASSES OF FUNCTIONS

被引:26
作者
SHEEHY, A [1 ]
WELLNER, JA [1 ]
机构
[1] UNIV WASHINGTON,DEPT STAT,SEATTLE,WA 98195
关键词
BOOTSTRAP; CENTRAL LIMIT THEOREM; EMPIRICAL PROCESS; FUNCTIONAL CENTRAL LIMIT THEOREM; GAUSSIAN PROCESSES; PARAMETRIC BOOTSTRAP; NONPARAMETRIC BOOTSTRAP; REGULAR ESTIMATORS; SEQUENTIAL EMPIRICAL PROCESS; UNIFORMITY; UNIFORM INTEGRABILITY; WEAK APPROXIMATION;
D O I
10.1214/aop/1176989538
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A class F of measurable functions on a probability space (A, A, P) is called a P-Donsker class and we also write F is-an-element-of CLT(P), if the empirical processes X(n)P = square-root n (P(n) - P) converge weakly to a P-Brownian bridge G(P) having bounded uniformly continuous sample paths almost surely. If this convergence holds for every probability measure P on (A, A), then F is called a universal Donsker class and we write F is-an-element-of CLT(M), where M = {all probability measures on (A, A)}. If the convergence holds uniformly in all P, then F is called a uniform Donsker class and we write F is-an-element-of CLT(u)(M). For many applications the latter concept is too restrictive and it is useful to focus instead on a fixed subcollection P of the collection M of all probability measures on (A, A). If the empirical processes converge weakly to G(P) uniformly for all P is-an-element-of P, then we say that F is a P-uniform Donsker class and write F is-an-element-of CLT(u)(P). We give general sufficient conditions for the P-uniform Donsker property and establish basic equivalences in the uniform (in P is-an-element-of P) central limit theorem for X(n), including a detailed study of the equivalences to the "functional" or "process in n" formulations of the CLT. We give applications of our uniform convergence results to sequences of measures {P(n)} and to bootstrap resampling methods.
引用
收藏
页码:1983 / 2030
页数:48
相关论文
共 42 条
[1]   THE CENTRAL-LIMIT-THEOREM FOR STOCHASTIC-PROCESSES [J].
ANDERSEN, NT ;
DOBRIC, V .
ANNALS OF PROBABILITY, 1987, 15 (01) :164-177
[2]   THE CENTRAL LIMIT-THEOREM FOR NON-SEPARABLE VALUED FUNCTIONS [J].
ANDERSEN, NT .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (03) :445-455
[3]  
Araujo A, 1980, CENTRAL LIMIT THEORE
[4]   BRUNN-MINKOWSKI INEQUALITY IN GAUSS SPACE [J].
BORELL, C .
INVENTIONES MATHEMATICAE, 1975, 30 (02) :207-216
[5]   LIMIT-THEOREMS FOR SUMS OF WEAKLY DEPENDENT BANACH-SPACE VALUED RANDOM-VARIABLES [J].
DEHLING, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 63 (03) :393-432
[6]  
Dudley R.M., 1990, PROGR PROBABILITY, V21, P63
[7]   UNIVERSAL DONSKER CLASSES AND METRIC ENTROPY [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1987, 15 (04) :1306-1326
[8]  
DUDLEY RM, 1985, LECT NOTES MATH, V1153, P141
[9]   INVARIANCE-PRINCIPLES FOR SUMS OF BANACH-SPACE VALUED RANDOM ELEMENTS AND EMPIRICAL PROCESSES [J].
DUDLEY, RM ;
PHILIPP, W .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (04) :509-552
[10]  
DUDLEY RM, 1989, REAL ANAL PROBABILIT